

Algorithmic Optimization of Non-Binary Decoders.

Joseph JABOUR

Thesis Defense held in Lorient on 14 Dec, 2023.

Rapporteurs:	Francisco GARCÍA HERRERO	Professeur à Universidad Complutense de Madrid.
	Christophe JEGO	Professeur à ENSEIRB-MATMECA - IMS
Examinateurs :	Catherine DOUILLARD	Professeure à l'IMT Atlantique
	Charly POUILLAT	Professeur à INP-ENSEEIHT
Dir. de thèse :	Emmanuel BOUTILLON	Professeur à l'Université Bretagne Sud
Encadrants de thèse :	Ali ALGHOUWAYEL	Maître de Conférences à l'IMT Atlantique
	Hussein HIJAZI	Maître de Conférences à Lebanese International University
	Cédric MARCHAND	Docteur-Ingénieur de recherche à l'Université Bretagne Sud

◆□ → ◆□ → ◆ = → ◆ = → へ ●

Non-Binary Low-Density Parity-Check Codes 00000000 0000000 Non-Binary Polar Codes

Conclusion 0000 References

Brief Context and Objective

- This thesis is a part of the Quasi Cyclic Small Packet (QCSP)¹ project.
- QCSP Project: Association of non-binary codes with Cyclic-Code Shift Keying (CCSK)² for self-synchronization and identification waveforms for IoT networks.
- CCSK is a low-rate non-binary modulation of rate $r = \frac{\log_2(q)}{q}$ where q is field order.
- Thesis role: investigates non-binary decoders and aims to optimize their decoding algorithms.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000

(a)

References

Error Control Codes I

- Shannon³ proved that reliable communication is possible.
- Since then, plenty of error correction codes have been proposed.
- In general, an error correction code receives an information block of length K and encodes it to generate a codeword of length N by introducing M = N K redundant symbols.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Error Control Codes II

Figure 1: Performance of classical codes (before 1993).

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Error Control Codes III

Figure 2: Performance of capacity-approaching codes

³C. E. Shannon, "A mathematical theory of communication," *The Bell System Technical Journal*, vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.1538-7305.1948.tb01338:x≡ → =

J. Jabour

Non-Binary Low-Density Parity-Check Codes 000000000 0000000 Non-Binary Polar Codes

Conclusion

References

If all is good, why non-binary codes?

Performance of binary codes degrades under:

- Short packet communication.
- Non-binary Modulation.
- Solution: Use NB codes.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Performance of Binary Vs. NB LDPC

Figure 3: Binary vs. Non-Binary GF(64) LDPC over Different Modulation Schemes⁴

⁴S. P. et al., "Performance evaluation of non-binary ldpc codes on wireless channels," in *ICT-MobileSummit 2009 Conference Proceedings*, 2009, ISBN: 978-1=9058249-12-0. = > < = >

J. Jabour

Optimization of NB Decoders

Non-Binary Low-Density Parity-Check Codes 000000000 0000000 Non-Binary Polar Codes

Conclusion 0000 References

Performance of Non-Binary Codes on CCSK Modulation

Optimization of NB Decoders

Non-Binary Low-Density Parity-Check Codes 000000000 0000000 Non-Binary Polar Codes

Conclusion

References

Alright! Let's use non-binary codes.

- HIGH COMPLEXITY DECODERS.
- However, standardized for the Chinese Satellite Navigation System, BeiDou⁵ for low code rate applications.

⁵C. S. N. Office. (2019), "BeiDou Navigation Satellite System Signal In Space Interface Control Document," [Online]. Available: http://www.beidou.gov.cn/xt/gfxz/201912/P020230516558050038035.pdf < => < =>

J. Jabour

Non-Binary Polar Codes

Conclusion 0000

イロト イヨト イヨト イヨト

References

Binary Vs. Non-Binary Codes

- Binary Codes have symbols and coefficients defined on $GF(q = 2^p)$ with p = 1.
- Non-Binary Codes have symbols and coefficients defined on $GF(q = 2^p)$ with p > 1.
- Increases complexity of arithmetic operations.

Figure 4: Arithmetic Operations on GF(2) and GF(8).

크

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000

< □ > < □ > < □ > < □ > < □ >

References

Non-Binary LDPC Codes

J. Jabour Optimization of NB Decoders 11/63

크

Non-Binary Polar Codes

Conclusion 0000 References

Structure of NB-LDPC Codes

- LDPC Codes invented by R. Gallager in 1960⁶.
- Rediscovered by D. Mackay in 1996^{7,8}.
- Linear block code defined by sparse Parity Check Matrix (PCM) **H** of dimension $M \times N$ over a Galois field $GF(q = 2^p)$ with p > 1.
 - M: Size of redundant symbols.
 - *N*: Size of codeword.

• Codeword X is valid iff $X \cdot \mathbf{H}^T = 0$ where \mathbf{H}^T is the transpose of \mathbf{H} .

⁶R. Gallager, Low Density Parity-Check Codes. Cambridge MA: MIT Press, 1963.

⁷D. MacKay, "Near shannon limit performance of low density parity check codes," English, *Electronics Letters*, vol. 32, 1645–1646(1), 18 Aug. 1996, ISSN: 0013-5194. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19961141.

⁸D. MacKay, "Good error-correcting codes based on very sparse matrices," in *Proceedings of IEEE International Symposium on Information Theory*, 1997, pp. 113–. DOI: 10.1109/ISIT.1997.613028.

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Structure of NB-LDPC Decoder

Figure 5: LDPC Decoder for N = 9 and K = 3.

• $d_v = 2$ have good performance and more hardware friendly⁹.

 ⁹C. Poulliat, M. Fossorier, and D. Declercq, "Design of regular (2,d_c)-LDPC codes over GF(q) using their binary images," *IEEE Transactions on Communications*, vol. 56, no. 10, pp. 1626–1635, 2008. DOI: 10.1109/TCOMM.2008.060527.

 4 □ ▷ < (⑦) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < (⊇) ▷ < ((D) ▷ < (D)) ▷ < ((D)) ▷ < ((

J. Jabour

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Min-Sum Algorithm

- Sub-optimal algorithm that introduces mathematical approximation to reduce the processing complexity.
- Exchanged (q-ary) messages defined as Log-Likelihood Ratios (LLRs).

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

Forward-Backward Approach

Complexity: $d_c q^{d_c-1}$.

Complexity: $3(d_c - 2)q^2$.

Figure 6: Conventional Check Node for $d_c = 5$.

Figure 7: Check Node Decomposition for $d_c = 5$.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Min-Sum Approximation I

Let A = [5, 4, 6, 8, 1, 7, 3, 0] and B = [8, 2, 0, 9, 5, 2, 7, 6].

Figure 8: Toy Example on GF(8) for Check Node Processing over Min-Sum.

Α

Non-Binary Low-Density Parity-Check Codes 000000000

Min-Sum Approximation II

Figure 9: Toy Example on GF(8) for Check Node Processing over Min-Sum.

э

(日)

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Min-Sum Approximation III

				-	-					
	5	9	6	8	1	7	3	0]	C
									1	
11	16	20	17	17	12	18	14	11		6
2	7	11	8	10	3*	9	5*	2*		1
0	5	9	6*	8	1*	7	3	0*		4
8	13	17	14	16	9	15	11	8		2
10	15	19	16	18	11	17	13	10	F	4
4	9	13	10	12	5*	11	7	4*		5
9	14	18	15	17	10	16	12	9		0
7	12	16	13	15	8	14	10	7		5

В

Figure 10: Toy Example on GF(8) for Check Node Processing over Min-Sum.

Α

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

Extended Min-Sum Algorithm I

When sorting the MS messages, the sorted messages are $A = [(\alpha^6, 0), (\alpha^3, 1), (\alpha^5, 3), (\alpha^0, 4)], B = [(\alpha^1, 0), (\alpha^4, 2), (\alpha^3, 5), (\alpha^6, 6)].$

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Truncation Scheme for NB-LDPC Decoders

Non-Binary Polar Codes

Conclusion

References

Evolution of NB-LDPC Decoding Algorithms.

- Belief Propagation[8].
- Symbol Flipping [10].
- Min-Max [11].
- Min-Sum [12].
- Extended Min-Sum [13].
- Syndrome-Based[14].
- Forward-Backward [15].
- L-Bubble [16].
- S-Bubble [17].
- Trellis Extended Min-Sum [18].
- Two-Extra Columns TEMS [19].

(a)

Is there still room for further reduction in complexity?

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default Algorithm I

The intangible principle of iterative decoding.

A priori information are NEVER considered.

Is NO MORE intangible!

Considering A priori information (correctly) simplifies the decoding process!

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default in a Market I

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default in a Market II

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default in a Market III

▲日▼▲□▼▲□▼▲□▼ 回 ろく⊙

J. Jabour Optimization of NB Decoders 25/63

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000 References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default Algorithm I

The intangible principle of iterative decoding..

A priori information are NEVER considered.

Is NO MORE intangible!

Considering A priori information (correctly) simplifies the decoding process!

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion 0000

(a)

References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default Algorithm II

- In BRD, VN requests the reliability of specific symbols from CN.
- Including these requested symbols maintains code convergence using fewer elements.
- Reduces communication load (bottleneck in parallel implementations) while maintaining similar decoding performance.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

The Best, the Requested, and the Default Algorithm

The Best, the Requested, and the Default Algorithm III

Figure 13: Toy Example on BRD over GF(8).

 Non-Binary Low-Density Parity-Check Codes
 Non-Binary Polar Codes
 Conclusion
 References

 0000000
 00000000
 00000000
 0000

 OCO00000
 00000000
 0000

 The Best, the Requested, and the Default Algorithm
 Units of the second second

Statistical Analysis of BRD Algorithm

- $\bullet \ N = 144.$
- **GF**(64).
- $E_b/N_0 = 3.5 \text{ dB}.$
- $iter_{max} = 10.$
- $\bullet n_B = 4.$

$$n_R = 3.$$

Figure 14: Probability that the encoded symbol x_j is in the message $\Gamma(M_{C2V_j})$.

イロト イヨト イヨト イヨト

Thesis Context and Objective OOOOOOO	Non-Binary Low-Density Parity-Check Codes ○○○○○○○○ ○ ○○ ○●○○○	Non-Binary Polar Codes 00 0 0000000				
The Best, the Requested, and the Default Algorithm						

Size of Messages

Table 1: Size of Exchanged Messages per Edge on GF(64)

Scheme	Code Rate	Input	Out	put
Jeneme		n_{vc}	n_B	n_R
TEMS	any	64	64	-
EMS	any	20	20	-
BRD	$r \ge 5/6$	4	4	3
	r = 1/2	8	6	5
	r = 1/3	13	7	8

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

The Best, the Requested, and the Default Algorithm

Trellis BRD

Figure 15: Trellis-BRD on GF(64) over BPSK.

Figure 16: FB-BRD Decoder on GF(64) over BPSK.

Thesis Context and Objective OOOOOOO	Non-Binary Low-Density Parity-Check Codes	Non-Binary Polar Codes	
The Best, the Requested, and the De	fault Algorithm		

Forward-Backward BRD Decoder I

Parallel CN implementation for a code rate r = 5/6 with $d_c = 12$ on Cyclone IV FPGA with frequency F = 200 MHz and throughput T = 24 Mbps.

Table 2: Synthesis Results for $d_c = 12$ on GF(64)

Scheme	Logic Elements	Registers
FB-EMS ($n_m = 16$)	109860	89940
FB-BRD $(n_{vc} = 4, n_B = 4, n_R = 3, n_{IN} = 15)$	94782	37308

15% reduction in computational load and 60% reduction in memory allocation.

(a)

Thesis Context and Objective OOOOOOO	Non-Binary Low-Density Parity-Check Codes ○○○○○○○○ ○ ○○ ○○○○●	Non-Binary Polar Codes 00 0 0000000	
The Best, the Requested, and the De			

NB-LDPC Conclusion

- The Best, the Requested, and the Default algorithm is proposed for NB-LDPC decoders.
- Reduces communication load by allowing exchange of a priori information.
- Implemented using different algorithms
 - Trellis EMS.
 - FB-EMS.
 - SYN-EMS.
- Also, used presorting to further reduce the internal processing of the EMS-based CN.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

(日)

References

Non-Binary Polar Codes

J. Jabour Optimization of NB Decoders 34/63

크

Non-Binary Polar Codes

Conclusion 0000 References

Introduction to Non-Binary Polar Codes

- Latest error correction code proposed by E. Arikan in 2009¹⁰.
- Encodes message of size K into a codeword of size N.
- Relies on channel polarization.
- Physical channel transformed into N virtual channels.
- Virtual channels are polarized into either noiseless or extremely noisy channels.

¹⁰E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," *IEEE Transactions on Information Theory*, vol. 55, no. 7, pp. 3051–3073, 2009. DOI: 10.1109/TIT.2009.2021379. < □ > < □ > < □ > < □ > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < < = > < = > < = > < = > < = > < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > <

J. Jabour

Non-Binary Polar Codes 0000000000

Structure of Polar Codes I

- Polar Code of code length N has $n = \log_2(N)$ (encoding/decoding) layers.
- Each layer consists of N/2 kernels

Figure 17: Polar Transformation (N-to-N) for N = 8.

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Structure of Polar Codes II

Kernel is basic processing unit in polar code.

Figure 18: Encoding Kernel

Thesis Context and Objective OOOOOOO	Non-Binary Low-Density Parity-Check Codes 000000000 0 00 00000	Non-Binary Polar Codes	

Structure of Polar Codes III

Assume K = 4, N = 8. $A_D = \{3, 5, 6, 7\}$ (using Genie-Aided decoding).

Figure 19: Polar Encoding

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Structure of Polar Codes IV

Figure 20: Factor Graph of SC Decoder for N = 8

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Structure of Polar Codes V

Successive Cancellation (SC) Decoding

Non-Binary Polar Codes

Conclusion 0000 References

Evolution of Non-binary Polar Decoding Algorithms

Min-Sum¹¹:

- Eliminates complex functions such as logarithmic and exponential functions.
- Converts all multiplication operations to additions.
- Simplified Min-Sum¹².
 - Truncation of one input only.
- Extended Min-Sum¹³:
 - Truncates the messages down to n_m.

J. Jabour

¹¹F. Cochachin, L. Luzzi, and F. Ghaffari, "Reduced Complexity of a Successive Cancellation Based Decoder for NB-Polar Codes," in *2021 11th International Symposium on Topics in Coding* (*ISTC*), 2021.

¹²F. Cochachin and G. Fakhreddine, "A Lightweight Encoder and Decoder for Non-Binary Polar Codes," in *2023 22nd International Conference on Wireless Networks (ICWN)*, 2023.

¹³P. Chen, B. Bai, and X. Ma, "Non-Binary Polar Coding with Low Decoding Latency and Complexity," *Journal of Information and Intelligence*, 2022, ISSN: 2949-7159.

Non-Binary Polar Codes

Conclusion

References

Asymmetrical Extended Min-Sum SC Decoder I

Check Node Processing:

Non-Binary Polar Codes

Conclusion 0000

(a)

References

Asymmetrical Extended Min-Sum SC Decoder II

Table 3: Arithmetic Operations Performed per CN

Algorithm	GF Additions	Real Additions
SC-MS	q^2	q^2
SC-EMS	$n_m \sqrt{n_m}$	$n_m\sqrt{n_m} - (2n_m - 1)$
SC-AEMS	$2(n_H + n_L) - 4$	$n_H + n_L - 3$

Compared to the EMS-based CN with $n_m = 20$, total computed candidates by an AEMS-based CN with $n_L = 20$ and $n_H = 8$ is reduced by 50%.

Non-Binary Low-Density Parity-Check Codes 000000000 0000000 Non-Binary Polar Codes

Conclusion

References

Asymmetrical Extended Min-Sum SC Decoder III

CCSK+BI-AWGN.

Figure 23: Simulation Results over GF(64) for N=64, $r\approx 1/3$ $(r_e\approx 1/32)$ and $r\approx 2/3$ $(r_e\approx 1/16)$ respectively.

Figure 24: Simulation Results over GF(64) for N = 256, $r \approx 1/3$ ($r_e \approx 1/32$) and $r \approx 2/3$ ($r_e \approx 1/16$) respectively.

(a)

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes 000000000 0000000 Non-Binary Polar Codes

Conclusion 0000

(a)

References

Polarization-Aware SC Decoder

- Polarization-Aware SC (SC-PA) decoder is a tailored SC decoder that has different kernel processing and input sizes.
- Designed using statistical estimation of CNs on successfully decoded frames.

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

SC-PA: Node Clusters

- At each layer l = 1, · · · , n, there are s = {0, · · · , 2^{l-1}} clusters.
- Each cluster s has set of kernels $S_s^{(l)}$ includes kernels from $t = s \times (2^{n-l})$ up to $t = (s+1) \times (2^{n-l}) - 1.$

Figure 25: Nodes Clusters

Non-Binary Polar Codes

Conclusion

(a)

References

SC-PA: Statistical Computation Using EMS CNs I

Bubble pattern matrix B^(l)_t is defined as a matrix of size n_m × n_m which includes the occurrence of the element (bubble) of T[']_Σ(i, j).

Figure 26: Computation of Bubble Indicator

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

< □ > < □ > < □ > < □ > < □ >

References

SC-PA: Statistical Computation Using EMS CNs II

Contribution Rate Matrix:
$$C_s^{(l)} = \frac{1}{2^{n-l}} \sum_{t=s.2^{n-l}}^{(s+1).2^{n-l}-1} \mathcal{B}_t^{(l)}.$$
 (5)

Figure 27: Computation of Contribution Rate Matrix

Non-Binary Polar Codes

Conclusion

References

SC-PA: Statistical Computation Using EMS CNs III

Accumulate statistical estimation over N_r decoded frames.

Figure 28: Accumulated Statistics of Contribution Rate Matrix

References

SC-PA: Pruning Process I

- Pruning process applied to T'_{Σ} of each cluster by defining threshold \mathcal{P}_t .
- Any bubble $T'_{\Sigma}(i,j)$ with contribution rate $C_s^{(l)}(i,j) < \mathcal{P}_t$ is omitted from CN processing.
- Pruned matrix formed and denoted as $T_{\Sigma_s}^{\prime(l)}$ defined using indication matrix $\mathcal{R}_s^{(l)}.$

$$\mathcal{R}_{s}^{(l)} = \begin{cases} 1 & \text{If } \mathcal{C}_{s}^{(l)}(i,j) > \mathcal{P}_{t} \\ 0 & \text{Otherwise} \\ (6) \end{cases} \begin{pmatrix} \mathcal{L}_{0}^{(j)} & \mathcal{L}_{0}^{(j)} \\ \hline 1 & 1 & 0.96(0.89(0.77 & 0.5 & 0.2) \\ 0.97(0.76(0.61) & 0.53 & 0.4 & 0.29 & 0.1 \\ 0.7 & 0.3 & 0.25 & 0.1 & 0.07(0.05 & 0.2) \\ 0.51 & 0.1 & 0.05 & 0 & 0 & 0 & 0 \\ 0.29 & 0.05 & 0.03 & 0 & 0 & 0 & 0 \\ 0.15(0.03) & 0.0 & 0 & 0 & 0 & 0 \\ 0.08 & 0.01 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{pmatrix} \xrightarrow{\mathcal{P}_{t} = 0.3} \mathcal{P}_{t} = 0.3 \end{pmatrix} \xrightarrow{\mathcal{P}_{t} = 0.3}$$

a(2)

Figure 29: Pruning Process to Generate Indicator Matrix

 $\mathcal{D}^{(2)}$

Thesis Context and Objective	Non-Binary Low-Density Parity-Check Codes 000000000 0000000	Non-Binary Polar Codes ○○○○○○○○●○	

SC-PA: Pruning Process II

$$T_{\Sigma_{s}}^{\prime(l)}(i,j) = \begin{cases} M_{H}(i) \boxplus M_{L}(j) & \text{ if } \mathcal{R}_{s}^{(l)}(i,j) = 1\\ (0,+\infty) & \text{ Otherwise} \end{cases} : 0 \le i, j < n_{s'}^{(l-1)}, \tag{7}$$

where $n_{s'}^{(l-1)}$ is the size of the input messages (output size of the connected cluster in the previous layer), i.e., $s' = \lfloor s/2 \rfloor$.

Figure 30: Pruned Matrix $T_{\Sigma_s}^{\prime(l)}$

크

ヘロア 人間 アメヨア 人間 アー

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

SC-PA: Complexity and Simulation Results I

• K = 85.

- **GF**(64).
- SNR=-11.5 dB.

Figure 31: Size Map over Different Layers and Kernels.

< □ > < □ > < □ > < □ > < □ >

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

SC-PA: Complexity and Simulation Results II

Figure 32: GF Additions per Kernel CN.

Figure 33: LLR Additions per Kernel CN.

Non-Binary Polar Codes

Conclusion 0000

・ロト ・四ト ・ヨト ・ヨト

References

SC-PA: Complexity and Simulation Results III

Table 4: Design Parameters for SC-PA Decoder and Arithmetic Operations over Different Codes.

K		SC-PA		SC-AEMS		SC-I	EMS
Π	μ	T_{GF}	T_{LLR}	T_{GF}	T_{LLR}	T_{GF}	T_{LLR}
$N = 64, \mathcal{P}_t = 0.12, n_0^{(0)} = 18$		= 18	$n_L = 20$	$, n_H = 8$	n_m :	= 18	
11	-13.5 dB	3776	916				
21	-10.5 dB	4082	788	0220	4000	12160	6560
42	-7.5 dB	4370	424	0320	4000	12100	0500
$N = 256, \mathcal{P}_t = 0.08, n_0^{(0)} = 18$		$n_L = 20$	$, n_H = 8$	n_m :	= 18		
42	-14 dB	22362	6048				
85	-11.5 dB	24294	5744	46500	22400	60006	26726
171	-8 dB	24742	3180	40392	22400	00090	30730
$N = 1024, \mathcal{P}_t = 0.09, n_0^{(0)} = 25$		$n_L = 20$	$, n_H = 8$	n_m :	= 22		
171	-15 dB	151986	45756				
341	-12 dB	180396	45420	220616	115200	171261	276490
683	-8.5 dB	222488	33314	239010	115200	414204	210400

50% saving in GF additions and 90% in LLR additions compared to SC-EMS.

크

Thesis Context and Objective OOOOOOO

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

SC-PA: Complexity and Simulation Results IV

Figure 34: FER Performance over CCSK Modulation for N = 64 on GF(q).

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

SC-PA: Complexity and Simulation Results V

Figure 35: SC-PA over BPSK for N = 128, K = 42 on GF(64).

Thesis Context and Objective O O OOOOO	Non-Binary Low-Density Parity-Check Codes 000000000 0 00 00000	Non-Binary Polar Codes	Conclusion ●000	
Conclusion				
Non-binary coo	 BRD Reduction in communicati Negligible Performance Detection 	t suffer from higher on load and arithmetic opera egradation	r complexity	

크

イロト イヨト イヨト イヨト

Non-Binary Polar Codes

Conclusion

References

Perspectives and Future Work

- Overall complexity assessment:
 - Sorting.
 - VN Processing.
 - Routing.
 - Memory allocation.
- Hardware Implementation of proposed algorithms.
- Comprehensive complexity-performance study of non-binary polar and binary polar decoders over non-binary modulation.
- Extend study area to include SC List Decoding for NB Polar codes.
- Non-binary turbo codes.. a vague journey?

Non-Binary Low-Density Parity-Check Codes 00000000 0000000 Non-Binary Polar Codes

Conclusion

References

Thank You!

▲日▼▲□▼▲□▼▲□▼ ● ● ● ●

J. Jabour Optimization of NB Decoders 59/63

Thesis Context and Objective OOOOOOO Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

List of Publications

- J. Jabour, C. Marchand, and E. Boutillon, "The Best, The Requested, and The Default Non-Binary LDPC Decoding Algorithm," in 2021 11th International Symposium on Topics in Coding (ISTC), 2021, pp. 1–5. DOI: 10.1109/ISTC49272.2021.9594148
- J. Jabour, C. Marchand, and E. Boutillon, "The Best, the Requested, and the Default Elementary Check Node for EMS NB-LDPC Decoder," in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6. DOI: 10.1109/WCNC55385.2023.10118720
- J. Jabour, A. C. Al-Ghouwayel, and E. Boutillon, "Asymmetrical Extended Min-Sum for Successive Cancellation Decoding of Non-Binary Polar Codes," in 2023 12th International Symposium on Topics in Coding (ISTC), 2023, pp. 1–5. DOI: 10.1109/ISTCS7237.2023.10273502
- J. Jabour, A. C. Al-Ghouwayel, and E. Boutillon, "Polarization-Aware Decoding for Non-binary Polar Decoders," IEEE Communication Letters, 2023. DOI: Submitted
- E. Boutillon, J. Jabour, and M. Cédric, "A method for decoding a codeword encoded using a non-binary code, corresponding device, and computer program," WO2023025960A1, 2023. [Online]. Available: https://patents.google.com/patent/W02023025960A1

Non-Binary Polar Codes

Conclusion

References

Bibliography I

- [1] K. Saied. (2019), "Quasi Cyclic Small Packet," [Online]. Available: https://qcsp.univ-ubs.fr.
- G. Dillard, M. Reuter, J. Zeiddler, and B. Zeidler, "Cyclic Code-Shift Keying: A Low Probability of Intercept Communication Technique," IEEE Transactions on Aerospace and Electronic Systems, 2003.
- C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
- S. P. et al., "Performance evaluation of non-binary ldpc codes on wireless channels," in ICT-MobileSummit 2009 Conference Proceedings, 2009, ISBN: 978-1-905824-12-0.
- C. S. N. Office. (2019), "BeiDou Navigation Satellite System Signal In Space Interface Control Document," [Online]. Available: http://www.beidou.gov.cn/xt/gfxz/201912/P020230516558050038035.pdf.
- [6] R. Gallager, Low Density Parity-Check Codes. Cambridge MA: MIT Press, 1963.
- [7] D. MacKay, "Near shannon limit performance of low density parity check codes," English, Electronics Letters, vol. 32, 1645–1646(1), 18 Aug. 1996, ISN: 0013-5194. [Online]. Available: https://digital-library.theiet.org/content/journals/101.049/el_19961141.
- [8] —, "Good error-correcting codes based on very sparse matrices," in Proceedings of IEEE International Symposium on Information Theory, 1997, pp. 113–. DOI: 10.1109/ISIT.1997.613028.
- C. Poulliat, M. Fossorier, and D. Declercq, "Design of regular (2,d_c)-LDPC codes over GF(q) using their binary images," IEEE Transactions on Communications, vol. 56, no. 10, pp. 1626–1635, 2008. DOI: 10.1109/TCOMM.2008.060527.
- [10] B. Liu, J. Gao, G. Dou, and W. Tao, "Weighted symbol-flipping decoding for nonbinary ldpc codes," in 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing, vol. 1, 2010, pp. 223–226. DOI: 10.1109/ISWCTC.2010.59.
- V. Savin, "Min-Max Decoding for Non-binary LDPC Codes," in 2008 IEEE International Symposium on Information Theory, 2008, pp. 960–964. DOI: 10.1109/ISIT.2008.4595129.

Non-Binary Polar Codes

Conclusion

References

Bibliography II

- [12] M. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," IEEE Transactions on Communications, vol. 47, no. 5, pp. 673–680, 1999. DOI: 10.1109/26.768759.
- [13] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, "Low-complexity, low-memory ems algorithm for non-binary ldpc codes," in 2007 IEEE International Conference on Communications, 2007, pp. 671–676. DOI: 10.1109/ICC.2007.115.
- [14] P. Schläfer, N. Wehn, M. Alles, T. Lehnigk-Emden, and E. Boutillon, "Syndrome-based Check Node Processing of High Order NB-LDPC Decoders," in 2015 22nd International Conference on Telecommunications (ICT), 2015, pp. 156–162.
- [15] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, "Low-complexity Decoding for Non-Binary LDPC Codes in High Order Fields," IEEE Transactions on Communications, vol. 58, no. 5, pp. 1365–1375, 2010.
- [16] E. Boutillon and L. Conde-Canencia, "Simplified check node processing in nonbinary LDPC decoders," in 2010 6th International Symposium on Turbo Codes Iterative Information Processing, 2010, pp. 201–205. DOI: 10.1109/ISTC.2010.5613839.
- [17] O. Abassi, L. Conde-Canencia, A. Al Ghouwayel, and E. Boutillon, "A Novel Architecture for Elementary-Check-Node Processing in Nonbinary LDPC Decoders," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 64, no. 2, pp. 136–140, 2017. DOI: 10.1109/TOSII. 2016.2551550.
- [18] E. Li, K. Gunnam, and D. Declercq, "Trellis-Based Extended Min-Sum for Decoding Non-Binary LDPC Codes," in 2011 8th International Symposium on Wireless Communication Systems, 2011, pp. 46–50.
- [19] J. Tian, S. Song, J. Lin, and Z. Wang, "Efficient T-EMS Based Decoding Algorithms for High-Order LDPC Codes," IEEE Access, vol. 7, pp. 50980–50992, 2019.
- [20] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009. DOI: 10.1109/TIT.2009.2021379.
- [21] F. Cochachin, L. Luzzi, and F. Ghaffari, "Reduced Complexity of a Successive Cancellation Based Decoder for NB-Polar Codes," in 2021 11th International Symposium on Topics in Coding (ISTC), 2021.
- [22] F. Cochachin and G. Fakhreddine, "A Lightweight Encoder and Decoder for Non-Binary Polar Codes," in 2023 22nd International Conference on Wireless Networks (ICWN), 2023.

Non-Binary Low-Density Parity-Check Codes

Non-Binary Polar Codes

Conclusion

References

Bibliography III

- [23] P. Chen, B. Bai, and X. Ma, "Non-Binary Polar Coding with Low Decoding Latency and Complexity," *Journal of Information and Intelligence*, 2022, ISSN: 2949-7159.
- [24] J. Jabour, C. Marchand, and E. Boutillon, "The Best, The Requested, and The Default Non-Binary LDPC Decoding Algorithm," in 2021 11th International Symposium on Topics in Coding (ISTC), 2021, pp. 1–5. DOI: 10.1109/ISTC49272.2021.9594148.
- [25] —, "The Best, the Requested, and the Default Elementary Check Node for EMS NB-LDPC Decoder," in 2023 IEEE Wireless Communications and Networking Conference (WCNC), 2023, pp. 1–6. DOI: 10.1109/WCNC55385.2023.10118720.
- [26] J. Jabour, A. C. Al-Ghouwayel, and E. Boutillon, "Asymmetrical Extended Min-Sum for Successive Cancellation Decoding of Non-Binary Polar Codes," in 2023 12th International Symposium on Topics in Coding (ISTC), 2023, pp. 1–5. DOI: 10.1109/ISTG57237.2023.10273502.
- [27] —, "Polarization-Aware Decoding for Non-binary Polar Decoders," IEEE Communication Letters, 2023. DOI: Submitted.
- [28] E. Boutillon, J. Jabour, and M. Cédric, "A method for decoding a codeword encoded using a non-binary code, corresponding device, and computer program," WO2023025960A1, 2023. [Online]. Available: https://patents.google.com/patent/W02023025960A1.