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! In Section Il, we give a brief introduction to non-binary
Abstract—Non-binary LDPC codes are now recognized as a | DPC codes defined on the general linear group. Then, in
potential competitor to binary coded solutions, especia§f when  gaction IIl, we present the optimization method that we wse a

the codeword length is small or moderate. More and more works fficient code desi Thi his indeed imlivat
are reported with good performance/complexity tradeoffs,which efhcient code design. 1his approach is indeed a genenairza

make non-binary solutions interesting for practical applications, Of the work presented in [1]. We show in particular that it is

such as 4G-wireless systems or DVB-like systems. possible to choose better code components (corresponaling t
In this paper, we show that proposing non-binary LDPC g single non-binary parity check) in the GLG set than in the

codes build on finite fields is actually a limitation, both fram corresponding field Gfg), then we adapt the global minimum

performance and implementation aspects. By considering mo dist imizati - | | full K criteri
binary codes on the general linear group, we show in particudr istance maximization using a local full rank criterion ER

that one can obtain a slight performance improvement compaed  t0 the GLG case. Then, in Section IV, we present the impact
to Galois field codes, with reasonable additional cost in the of using GLG codes instead of field codes in the decoder
hardware implementation. The performance gain is quite sm,  architecture, and show that the extra cost induced can-negli
but comes at a slight extra decoding cost, and is obtained by gipje Finally, a performance comparison between optighize
proper generalization of the code optimization techniqueshat field cod d optimized GLG codes i de in Section V
are standard for non-binary LDPC codes on fields. ield codes and optimize - codes Is made In sec 'c_m :
For code rate R 1/2 and various lengths, we show a slight
. INTRODUCTION improvement in the waterfall region with expected neglégib

It has been shown in several recent papers that non-binggF0ding complexity, while comparison at rate-R/4 shows
codes can have very good performance/complexity tradeoffd improvement both in the waterfall and the error floor.
when the order of the Galois field Gf in which the codes
are considered is higl> 64 and when the minimum symbol |I. NON-BINARY LDPC CODES DEFINED ON THE GENERAL
node connexionl, = 2 is used for the Tanner graph of the LINEAR GROUPR
code [1], [2]. Those codes are then nowadays considered as )
real competitors to binary LDPC and Turbo-codes in the mtqu' Non-binary LDPC codes ensembles
standarts of digital communication (4G, DVB, etc). An LDPC code is a linear block code defined on a very

In this paper, we deal with a much more general family afparse parity-check matrid with the dimensions o/ x N,
non-binary LDPC code, that is generalized low-densitytpari which can be defined over the binary Galois field or high
check (GLDPC) codes over the general linear group (GLG)rder Galois fields. Lek = [z ...xzy_1] be a codeword. If
By considering codes in a wider ensemble, it is therefotee code is defined over a finite field GF@with ¢ = 27, the
possible to find better codes without changing the Tanngrth parity check equation can also be written as
graph density or the order of the symbols finite set, theeefor
without increasing significantly the decoding complexitye Z hijz; =0
have therefore generalized the approaches proposed iroft] f jihi #0
field codes to codes over the general linear group, and pro- . o
posed an efficient hardware implementation of the genemliz2Vhere.; are non-zero elements from Gjj( This definition

decoder, which improves the performance complexity tréide¢a@n be generalized to the case of non-binary code ensembles
of the coding system. defined over the general linear group [3] or more generally

to the case of codes defined over the finite Abelian group
lthis work is supported by the European FP7 ICT-STREP DAVINfject G(2P) = L [4]. In these cases, the-th parity check equation
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can be written as

> hij(a;) =0in G(2°)

J

1)

where h;; @ G(2P) — G(27) is a linear function, also
called mapping, associated with each edge of the non-bin
Tanner graph representing the parity-check maldx The
corresponding Tanner graph of a non-binary code defined o
the GLG is given in Figure 1.

Using this representation, for codes defined over a fie
GF(g), the 27 — 1 mapping functions reduce to the multi-
plicative group of GH{) and they are equivalent to cyclic
permutations. For the general linear group, the gebf the
mappingsh;;(.) is the set of the bijective linear mapping
whose cardinality igH| = Hﬁ;é (2P — 2™) [3], whereas for
the last case of codes defined over an Abelian grbyg.)
can be either linear or non linear mappings [4].

In the following, we will only consider the design of non
binary LDPC codes defined over the general linear group. As
the case for non-binary LDPC codes over @F-(ve can easily

derive an equivalent binary representation of the non+lina

LDPC codes defined on the GLD. To this end, let us consid
the binary mapping of the non-binary symbols ov&(2?).
The symbolse; can be represented usipguples defined over
GF(2). Using a binary vector notation, we can write

T T
> Hyxj =0
J:Hi;#0

)

whereH,; is thep x p invertible matrix over the binary field
associated with the bijective linear mappihg(.), x; is thep-
tuple associated symbol elementand’ holds for transpose.

the i—th parity-check equation oH, can be finally written
asH,X7 = 07. We defined"”) as the minimum distance
of the binary code associated wilH;. This representation
will be used in the following to select good code components.
More generally, when using the binary matrix representatio
of mapping functions, we can associate with the overall code
an equivalent binary code with associated parity-checkirmat

H,.

B. Decoders for non-binary LDPC codes

Aside from the Belief propagation decoder on (@F[5],

[6], other types of decoders have been introduced in the
litterature to decode efficiently non-binary codes in higties
fields [2]. The different proposed decoders are essentially
different for the symbol and/or the checknode updates, fmit a
exactly the same with respect to the edge computation and
especially in their treatment of the non-zeros labels stppo

by the edges of the Tanner graph (depicted as “linear functio
nodes” on figure 1). For example, a BP-like decoder with

%%per modifications to encompass the GLG case is shortly

depicted below in this section. A thourough discussion @n th

‘Etficient implementation of thedge update or linear function

Pé)des update is conducted in section IV.

We will refer to the belief propagation decoder on group as
groupBP decoder. The Tanner graph of an LDPC code over
a finite group is depicted on Figure 1, in which we indicated
the notations we use for the vector messages. Additionally t

She classical variable and check nodes, we add functionsnode

to represent the effect of the bijective linear mappings.).
The groupBP decoder has four main steps which qse2?
dimensional probability messages:

i® Data node update: the output extrinsic message is ob-

tained from the term by term product of all input mes-
sages, including the channel likelihood message, except
the one carried on the same branch of the Tanner graph.
Function node update: the messages are updated through
the function nodes:;;(.). In the case of general linear
functions fromG(2?P) to G(27) denotedsd = f;;(«), the
update operation is:

U] = 3 Unglai]

er
°

Oq— 1, ﬁj = hij (Oéz)
e Check node update: this step is identical to BP decoder
over finite fields and can be efficiently implemented using
a Fast Fourier Transform. See e.g. [4] for more details.

The vector0 is the all zero component vector. Note that the ¢ Inverse function node update: the update equation is

mappings:;; (.) define now some permutations of thréuples.

Considering thei—th generalized parity-check equation of

Viwlai] = Vep[B5] Vag : 5 = hij (o)

H involving exactly d.,; codeword symbols, we can define e do not have enough space in this paper to present in

H; asH, = H,;,---H,;,, - - ,Hijdcﬂ] as the equivalent
binary parity-check matrix of thé—th row constraint, with
{jm :m = 0,1,---,d.; — 1} is the set of the indexes of
the codeword symbols involved in the-th constraint. Let

Xi = [xj, - "%j, ,,] be the binary representation of the

symbols of the codeword involved in thei—th generalized
parity-check equation. When using the binary representati

details the BP equations, or its reduced compexity versions
but the reader can refer to [4], [3], [2] for complete details

[1l. FINITE LENGTH DESIGN OF REGULAR(2,d,)

NON-BINARY CODE OVERGLG.

For codes defined over Gfj( when addressing finite length
design, it has been shown in [5] and [1] that selecting



carefully the non binary entries of the parity-check mat@&n permutations of these component codes.
improve the overall performance of the code when compared .
to randomly chosen coefficients. The selection of the noa ze%‘ Component Code Selection ) )
values can impact both on the waterfall and the on error floor. !N [1], the authors selected the best row entries according
The observed performance gains are dependent of both #idhe maximum ofdy,;n using the equivalent binary parity-
field order and the code rate. check matrix of each row. This can be naturally extended to
In the waterfall region, selecting the edges label row-wid8€ case of non-binary code ensemble defined over the GLG
is critical. It is shown in [1] that “best” rows are selecte?Y Selecting component codes having good minimum distance
according to their equivalent binary minimum distance arf@’d minimum multiplicity for each row. Using this selection
multiplicity of the minimum distance. In addition to that Criterion, we can then consider better codes in the GLG than
for ultra-sparse non-binary codes (i.e. strictly reguiard.) 1" GF(q). For example, the best.-tuples of coefficients for
codes, also called cyclecodes), it has been also shownGR(©64) With d. = 4 have minimum distance df in GF(q)
[1] that it is possible to lower the error floor by avoidingVhil€ itis possible to consider component codes wiith, = 4
low weight codewords induced by some algebraic topologicsl the GLG. This will have a direct impact on the waterfall of

structures of the underlying Tanner graph, such as cyci&§ LDPC code. o
or stopping sets. Choosing properly the edge labels of the! his motivates the search for components codes achieving

stopping sets has a direct influence on the local minimutiae best bound in terms _of minimum distance and multi.plic.ity
distance of the code, and therefore on the global minimuhCl- For our example, this can be done for example by finding
distance as well. Since the error floor performance of ultr§20d codes using carefully chosen shortened versions of a
sparse non-binary LDPC codes are limited by the globf3;57) Hamming code, or by shortening(32, 26) extended-
minimum distance and not the pseudo-distance as for tH@MMIng code. This is not the optimal choice, but we will
binary LDPC codes, it is therefore very important to maxienizS€€ N the performance resul'gs section that this example is
the minimum distance of the code by proper optimization. [ffficient to ensure some gain compared to(&FLDPC

this paper, we aim at generalizing the method proposed in [rﬂdes. Future work will aim at considering the optimum

to the case of non-binary codes over the general linear grogeice for the component codes. Once a code component or
We will restrict our contribution to the case of ultra-sparon @ collection of code components has been selected, we can
binary codes for two main reasons: easily generate other good codes using bitwise permutation

has b h . h | q We make use of the bitwise permutation technique in order to
(a) It has been shown in [1][7] that ultra-sparse codes C3Raximize the global minimum distance with a generalization

per_f(_)rm_very well under iterative decoding, being_cor_n(-)f the algorithm presented in [1]. This optimization methsd
petitive in both the waterfall and the error-floor region Nyepicted in the next section

comparison with the state-of-the-art iteratively decddab
codes. B. Code Optimization with Random Permutations of One
(b) it has been pointed out by [3] that codes defined ov&iomponent Code
GF(q) and Gg) of the same order seem to have approxi- In this paper, we further propose rank-guaranteed random
mately the same thresholds. As a consequence, the sajiiise permutations to expand the possible entries whérh ¢
behavior under iterative decoding is expected, indicatinghnstruct a component code with good distance properties.
that the use of LDPC edge distributions well suited fopyith bitwise permutations, more component codes with good
iterative decoding over G is a reasonable choice forminimum distance can be generated ensuring the diversity of
G(q) codes. the non zero entries to fully benefit from the optimization
Before describing in detail our design method, let us firsbin Procedure of [1]. We can denote the bitwise permutationgisin
duced the main features. Basically, the proposed finitetten@ pde x pd. permutation identity matrixII, and thend,
design is based on two main steg$) building the graph, different non-zero entries ove¥(2P) are achieved as follows.
i.e. optimizing the edge connections andt) selecting the H, = [H,;,...H;, ...H;, -1
non zeros entries aoff, i.e. choosing carefully the application — |, .. H, .. H, ] 3
hi;(.). The first part can be efficiently addressed using some 430 tm de,i—1
instances of the PEG algorithm [8] [9], aiming at maximizin@®n one hand, we lim#;; ,0<m <d.,;—1,tobeinvertible
the local girth. It can be shown as a first requirement to ensuwr to be full rank. This guarantees thay;,, () is a bijective
good achievable minimum distance when considering diregtapping orH;; < G(2”). In this way, all the function node
extensions of the results in [1] to our case. Then, non zeropdate step can use the similar component and the decoder
entries are selected carefully to ensure both good walterfahs a uniform architecture. Additionnaly, it is obvious ttha
behavior and low error floors. the good minimum distance property is maintained with the
To this end, we will first consider the search for good codeitwise permutation and thus the new row entries are also the
componentsj.e. having good minimum distance propertiesbest entries in terms of minimum distance and its multipfici
Based on these sets of potentially good codes, we then d&en, when considering these permutations, we apply atdirec
scribe how we perform the optimization using random bitwisgeneralization of the optimization method proposed in [1].



The optimization consists in iteratively selecting thedamly can be characterised by an offset johits. More generally,

permuted rows to ensure the FRC condition for the cycles ibffwe definee elementary permutationm, },—o...—1, then

the underlaying graph while maximizing the binary minimum2¢ different permutations can be defined by @it vectors

distance over the set of the topological stopping sets. P = (Pe—1,.-,P1,p0) @Sh, = mY*7" o ..m* omh® where

o stands for the composition operator amd~ is the identity

IV. EFFICIENT IMPLEMENTATION ARCHITECTURES FOR permutation ifp, = 0, the m, permutation ifp, = 1.

NON-BINARY LDPC CODES OVERGLG Finally, although not yet formally verified, the same permu-

Proposing efficient codes, like GLG LPDC, would onlyation can be shared by several different edges. In this, case

remain a good theoretical work if no consideration is given tpermutation matrices (or, as seen above, methods to generat

its hardware implementation. In the case of GLG LDPC codes,permutation) can be stored in a shared memory. An index

the only difference between the non-binary LDPC decoder aigthen associated to each edge to refer to the permutation

the non-binary GLG LDPC decoder is the updating of thassociated to this edge. In that case, the increase of memory

edges (defined by the mapping functions). In this section wfze is very limited.

recall some complexity issues in non-binary LDPC decodersTo conclude, compared to a classical non-binary LDPC, a

and then we focus on the implementation of the edge updatgisect implementation of a GLG LDPC requires an increase

of a factorp of the memory size. In this section, we proposed

A. GLD LDPC decoder architectures several ideas that could limit this increase.
So far, there are very few, if any, reported implementation

of non-binary LPDC decoders. The only works deal with the V. SIMULATION RESULTS.

simplification of the GR{) check node (see [12] and [2]). In this section, we present some simulation results foediff
Those papers reduce the complexity of the check node pest code lengths and rates for some codes defined ovih) G(
cessing fromy - log2(q) andn - logs(n) arithmetic operations, The results will be compared to optimized codes defined over
respectively £ << ¢). The last solution, the Extended Min-GF(64) with identical parameters. For our simulations, we are
Sum (EMS), allows the implementation of an LDPC decodeising non binary belief Propagation decoding over fields or
at a hardware cost competitive with binary LDPC codes @roups usingl00 decoding iterations.

Turbo-codes. The FP7 European project DaVinci aims to build First, we consider three rate one-half codes with code lengh
such decoder [11], but in this paper, we only focus on th¥ = 48 symbols defined over GE{) and G(4) respectively.
difference between non-binary LDPC decoder and GLG LDPA&I codes have the same graph built using the RPEG algorithm

decoder, i.e., in the edge computation. [9]. For the code defined over G&), we perform the global
_ minimum distance optimization using the method described i
B. Edge computation [1]. Then, for the last two codes, we consider the optimazati

For a given edge, its associated permutatiaran be repre- using, in one case, component codes with minimum distance
sented in binary by & x P binary matrixH. Using the binary d.;, = 3 and, in the other casel,;, = 4. The result-
representationX = [z¢, z1, ..., xp—1] Of the GFg) symbolx, ing codes are noted ‘GLG-d3’ and ‘GLG-d4’ respectively.
the permutationy = h(x) is then given byY = H - XT, For the ‘GLG-d3’ code, the component codes are obtained
where Y is the binary representation of Gff(symboly. using bitwise interleaved versions of a shortened versibn o
The direct storage of thé/ matrix requiresp? bits and the the (63,57) Hamming code. The bitwise permutations are
computation ofY” requiresp? AND functions andp p-input carefully selected in order to mimimize the global minimum
XOR functions. With a classical non-binary LDPC decoder, distance using a generalization of the method described in
single GF§) value is enough to characterise the transformatigf]. For the ‘GLG-d4’code, the component codes are obtained
(i.e. p binary elements). At first glance, moving towards GLGising bitwise interleaved versions of a shortened versibn o
LDPC increases by a facterthe size of the memory to storethe extented32,26) Hamming code. Then, the optimization
the edge transformation. However, there are simple tribks t is performed as previously described. Simulation resules a
allow to limit, or even avoid, this increase of memory. given in figure 2. The results show that all codes behave almos

First, if the architecture is fully parallel, i.e., a hardwainit the same in the error floor region, but the optimized GLG code
is dedicated for each branch computation, then both Galeigth d..;, = 4 exhibits a slight performance improvement in
Fields and group permutation will have a same hardwatiee error floor region. In this case, the ‘GLG-d4’ code seems t
complexity, since both implement a wired permutation. lis thoutperfom the ‘GLG-d3’ code based on a “weaker” component
case, GLPDC has no hardware penalties compared to nonede. The same behavior has been also observed for rate one-
binary LDPC. half codes with code lenglv = 192 symbols defined over

Second, there are exacyv edges on the bipartite graph ofGF(64) and G(4) respectively. As shown in figure 3, the error
the code, i.e 2N different permutations (and inverse permutafloors are the same and the waterfall improvement is alfiast
tion). It is possible to limit the search of permutation inubs dB. Here, the ‘GDG-d4’ code outperfoms clearly the ‘GDG-
group of permutation. In this case, instead of storing theleh d3’ code. Note that the codes have been optimized with the
permutation matrix, we can store only a value that defines tekeme parameters as before in all three cases but targeting
permutation. For example, all rotations on a vectopdbits a different codelength. Finaly, we have designed a code for
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Fig. 2. Performance comparison of radfe= 1/2 codes defined over G&{)  Fig. 4. Performance comparison of rake= 3/4 codes defined over G&()
and GE4) for N = 48 symbols. and GE4) for N = 192 symbols.

The performance gain is quite small, but comes at a slight

. ﬂéf N192: GF-Opt . . . - .

N N192: GLG -3 extra decoding cost, and is obtained by proper generalizati

10k NN —&— N384: GF-Opt | of the code optimization techniques that are standard far no
—&— N384: GLG-d4|

binary LDPC codes on fields.
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