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Abstract= This paper describes a VLSI architecture for a
Smart Reed-Solomon Decoder (SRSD). The SRSD use the RS
code both as an forward error correction code and as an
error control code. It uses information about the reliability of
the received symbeols to select “a priori” one (or more) effi-
cient decodings that combine correction of errors and era-
sures. Once the decoding is processed, the SRSD also
performs an “a posteriori” evalwation of the decoding pro-
cess in order to reject low reliability decoded codewords.

1. INTRODUCTION

The well known Reed-Solomon (RS) codes are usually
used for forward error andfor erasure coryections [1-4].
Nevertheless, they can also be efficiently used as a simple
check code for some other applications (wireless LAN for
example), with an optional capability of error and/or era-
sure correction if the result of the comrection is sufficiently
reliable. In this paper, the principle of an RS decoder tak-
ing into account information about the reliability of the
received symbols is presented. It performs one (or more)
efficient decodings that combine correction of errors and
erasures while maintaining an error control property. The
averall VLSI architecture is described together with the
performance results.

In section II, we present the principle of the adaptive
decoding strategy. The decoding process is explained in
section III and finally, the systolic Euclid architecture,
modified to perform a combination of emror and erasure
corrections, is presented in section IV.

1. ADAPTIVE DECODING STRATEGY

Let us consider an RS(n=2"-1, k, d) Reed-Solomon code

over GF(2™), with message length #, number of informa-
tion symbols & and minimum Hamming distanced=n + 1
- k. Let r be the number of redundant symbols, ie. r= n-
k.=d-1.

Each of the r redundant symbols can be considered as a
token during the decoding process. The correction of an
erasure (a non-detected symbol) needs one token while the
correction of a mistake needs two tokens (one for the posi-
tion, one for the value). Thus, the correction of any set of «

erasures and b errors with a + 26 < r can be made. The ¢
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= r - (@ + 2b) remaining symbols are used as control sym-
bols to verify that the corrected word using a + 2b tokens
really belongs to the code. A formal demonstration can be
found in (5]

The choice of (a, b, ¢) is based on the probability 2, of
mis-correction (message accepted with érrors after correc-
tion) and the distribution of the reliabilities of the received
symbols. Once the decoding process is finished, an a pos-
teriori evaluation of the comected code-word is performed
in order to reject codewords with non-consistent correc-
tion. A pon consistent correction can be the correction of 2
symbol received with a high reliability, or, more generally,
a correction where the “distance” between the received
symbol and the corrected one is above a given threshold.

For example, let us consider an application with P,, = 10™
using an RS(7,3,5) code, i.e., r = 4. Let us assume that the
symbols are received with 2 bits of reliability, as defined in
figuse 1.
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Fig. 1. Example of reliability distributions.
The distribution (I) of Fig. 1 leads to {(a, b, ¢) = (1,1, 1)
and K = {4} to correct the erasure (symbol 4, which has a

probability of error greater than 102) and one possible
mistake for one of the 3 symbols with a probability of
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error of 1073 (i.e. symbols 0, 1 and 5). If, for example, an error
is found for symbol number 2, the comection is not coherent
ang the a posteriori evaluation process will reject the code-
word.

Distrbution () of Fig. | leads to (a, b, ¢) = (2,0, 2) and
K={4,5}. Indeed, for the case of two errors among the sym-

bols of reliability 1073, the correction of two erasures and one
error ((a, b, ¢) = (2, I, 3)) leads to a mis-comrection.

{I1. PRINCIPLE OF DDECODING

Let us present the key equations for decoding a Reed-
Solomon code before describing the modified Euclid algo-
rithm.

A. Key decoding equation
Let K = {k;, i=1..a} be the set of known erasure positions and

U = {u, j=1..b} the set of unknown error positions. The loca-
tor polynomial A[X] is defined by

MX] = X [X]- A [X] €3
where
k.
Mix1= [ a+x-0 )
1€i€a

is the erasure locator polynomial and

W= [T aex-o® o

1€i<h

is the ervor locator polynomial.

Let S{X] be the received message syndrome (deg(S[X)) =r- 1)
and let R[X] be the evaluator polynomial defined by:

AlX]

R[X} = 7 4)
ie(Ku)(1-X-a)
Then, the key decoding equation is:
A[X1- S[X)=R[X] mod X
deg(AM{ XN <a+b &)

deg(R{XD<a+b

From the locator polynomial and the evaluator polynomial,
the a +b non zero values ¢; of the error polynomial E[X] are
obtained from the locator and the evaluator polynomial:

[ 3%
(%)
3

(e#0 e h@™) = 0) —{e,- = o ﬂiﬂ) ©
AMo]

A mathematical derivation of the above equations can be
found in {5}

B. Decoding procedure
The purpose of the decoding process is to obtain the solution

of the key equation (5). The algorithm is initialized by the two
tollowing equations:

[(Ea)o Aay[X1-S[X]=Rag[X] mod X'

M
I(E,,)0 AbolX} S[X]= Rby[X] mod X
with
Aag{X] =1 Ray[X] = S[X]
(8)
{lbO[X] =0 Rby[X]=X"

The first a steps of the decoding process are iterative mulitipli-
cations of equation (E,);. for i =1..a:

k.
(B (L+X o) (B, _, ©

in order to obtain

Aa X1 = [ (1+X o) = a,0x)

1<i<a

Ra,[X)= A,[X]}-S[X] mod X’

(10)

Then, the next 2b steps are a classical Euclid’s algorithm.
Each iteration aims to decrease the degree of Ra[X] (or Rb[X])
by one while increasing the degree of Aa[X] (or Ab{X1]) by one,
and this by linearly combining the equations (£,) and (£},) as
explained in [4].

After 2b iterations, if deg(Ra[X]) < a + b, the decoding pro-
cess is considered as successtui. Error positions and error and
crasure magnitudes are deduced from (6). Otherwise, the
decoding fails and the message is not accepted.

Consider, as an example, the simple RS(7,3,5) Reed Solomon

code defined over GF(8)=(Z/2Z)X)/(X 34X +1). The generator
polynomial G[X] is given by:

Q+X-a D)
02i<3

G[X] = 1n
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where o is the root of GF(8). Consider the transmission of an
RS(7,3,5) codeword in which two errors occur, the first one of

value o on the coefficient of X3 {position 5) and the second

one of value o! on the coefficient of X2 (position 2). The error
polynomial is then:

ElX) =o' X+ X° (12)
The syndrome S[X] of the error polynomiat E[X] is then:

SIX1= ¥ Eld]l- X =@ o 00y a3

0<i<3
where, by convention, the rightmost coefficient is the coeffi-
cient of the highest order (here X°) and the leftmost coefficient
the coefficient of X°.

It is known, from the input reliabilities of this particular exam-
ple,, that an erasure occurred in the fifth position , (g, b, ¢) =
(1,1, 1) and K = {5} is set for the decoding. Table { describes
the different steps of the algorithm. The initial equations are
(Ep)p and (E)g. The first @ = 1 step is the multiplication of
equation (E,)y with the partial locator polynomial A,{X] =
+ X.as), according to eq. (9) Then, the Euclid’s algorithm is
performed; setting

(Ep)y = (E,),

1 (14)
(Ep), X -(E,), +u ~(Eb)]
which reduces the degrree of R6{X] and setting
E 6 (E ' (&
( (I)JPQ ( a)2+a '( b)z (15)
(Ep)y — (Ep),
which reduces the degree of Ra[X].
x0 x! x2 x0 x! x2 x3 x*
Elo o0 0 XS¥=a*al0o o0
Eo 00 0 XSXI=0 0 0 0 o
El a0 XSX=a o of o 0
By 00 0 XSX1=0 0 0 0 o
Edy o0 XSXi=o o o® o 0
Epy 0 o o’ XSXI=0 of ot o 0
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Es o xXSXI=c?a20 0 0
(Ep)s

Table 1: Example of mixed decoding

0 of o XSIXI1=0 of o o 0

In a+2b = 3 steps, condition (5) is achieved since:

Aa;[X)-SIX]=Rby[X] mod X
deg(la,) = 2<a+b (16}

deg(Ra,) = I<a+b
One can verify that, with the decoding eguation (6), the error
polynomial can be reconstructed.

IV. ARCHITECTURE IMPLEMENTATION

We describe now the main characteristics of a hardware archi-
tecture and the modification of the Euclid’s algorithm in order
to include the erasure correction process.

A. Global architecture

The overall architecture is shown in Fig. 2.
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Fig. 2. Overall architecture

The received message M'[X] is stored in a FIFO while the
syndrome S{X] is computed. At the same time, the distribution
of the reliability of the symbols is evaluated by the decoding
strategy block. Once S[X] is compuied and the decoding stcat-
egy selected, the modified Euclid algorithm is performed. The
error polynomial E[X] is thus built from R[X] and AfX].
Finally, the delayed received message and the error polyno-
mial are added to find the corrected message. At this stage, the
final decision block verifies that the result of the correction is
consistent with the reliability of the symbols; otherwise, it
rejects the received codeword. In cases where several decod-
ing strategies arc explored, “final decision” makes the final
decision: rejection or choice of the best codeword.
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B. Modified Euclid’s algorithm

The hardware implementation of the modified Euclid’s aigo-
rithm is based on the work of [6], with a pipeline structure.
Polynomials are sent serially to a Processing Element (PE).
The degree of the coefficient is umplicitly given by its time of
arrival (from highest io lowest coefficient). For example, mul-
tiplication of equation (E,)g with (1 + X . o) is performed
with the operator of Fig. 3,

(1+X oOWE o= (E)

Fig. 3. Pipe-line multiplication

Table 2 shows the data going through paths (i), (m), (d) and
(o) of figure 3. The input (i) is the concatenation of polyno-
mial (AaglX], RagiX]) (seec Tabie 1}, from the highest coeffi-
cient of Rag{X] to the lowest coefficient of Aag{X]. Those two

polynomials are multiplied by o in (m), the output of the
multiplier, and are delayed by ! cycle in (d), the output of the
register D. That means that data in (m) are multiplied by X rel-
ative to data in (d). Thus, data in the output (o) are the sum of
the data going through (d) and (m), pamely Aay[X] and
Ra;[X].

Table 2: Sequence of computation .

In this table, the light grey is used for the coefficient of x°,
white dark grey are for the coefficients of X* and above, i.e.
dummy coefficients since operations are modulo X*.

The PE of the Euclid algorithn described in [6] has been

modified slightly to perform also iterations of type a. A design
of this RS decoder using VHDL synthesis gives an additicnal
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hardware cost of 20%, including control processes and man-
agement of the polynomial degree.

V. CONCLUSION

In this paper, we have presented the basics of an adaptive
Reed-Solomon decoder architecture. We have modified the
classical decoder architecture to allow the correction of any
set of a errors, & erasures, while keeping ¢ = r - (¢ +2b) con-
trol symbols. The decoding strategy combined with the a pos-
teriori evaluation of the decoding result gives significant
improvement on the erasure&error correction and control
check capabilities of the code. It allows to emulate a decoding
process with a total amount of “virtual” redundant symbols r*
greater than r.

The additional hardware cost for the decoding process (i.e.,
Euchid’s algorithm) is 20%. The hardware cost of the “decod-
ing strategy” and “final decision™ depend on the type of reli-
ability of the received symbols (from a simple scalar to a
complete matrix of pairwise probabilities) and the require-
ment of the application.

This type of decoding can be very useful to improve the effec-
tive transmission rate of an ARQ protocol transmission (a
wireless local area network for example), since part of the
transmission errors are directly and reliability corrected.
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