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Abstract

A Colored Gaussian Noise Generator (CGNG) adapted to
hardware implementation in FPGA circuit is developed
for the mobile communication channel emulation. The
CGNG is done with a classical ARMA filter excited by a
White Gaussian Noise. The MA filter and the 2nd order AR
filter are studied in this work. The statistical properties,
i.e. probability density function and power spectral
density, of the fixed precision hardware design are
mathematically defined. The CGNG can be used for the
hardware emulation of the Rayleigh Fading channel. An
example of CGNG with the Clarke filter that emulates the
mobile communication channel is given.
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1 INTRODUCTION

The design of a digital system for a communication
application (error control coding, demodulation) is a very
complex task requiring often trade-off between the
complexity and the performances. In the ideal case, the
formal expression of the Bit Error Rate (BER) can
generally be expressed [7] and used to predict the
performance of the system. But, in practice, the non-
linearity of the system (fixed precision implementation)
and/or the choice of a sub-optimal algorithm lead to a
formal expression of the BER, which is too complex to
derive. In that case, BER is evaluated using a Monte-Carlo
simulation. The real system is emulated with an exact
software model of the transmission system (transmitter,
channel and receiver) and its statistical behavior is
estimated by a software emulation of the transmission of
thousands of bits. Monte-Carlo simulations are easy to set-
up but they are time consuming. For example, 109
calculation iterations are needed to get an accurate (3.3%)
estimation of a BER around 10-6.

To overcome this problem, some authors propose to
replace software emulation by hardware emulation (using
a FPGA circuit) in order to speed-up the simulation by a
few orders of magnitude [1,2,3,4,6]. Compared to a
software compilation, this method is less flexible since
each modification of the system requires the synthesis of
the design from a Register Transfer Level (RTL) model
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and the place&route operations on the FPGA. But, once
this is done, the simulation can run at a very high speed
and an accurate BER evaluation can be obtained.

In previous work [3], a high quality White Gaussian Noise
Generator (WGNG) is described. This WGNG allows the
emulation, in a FPGA circuit, of the Additive White
Gaussian Noise channel (AWGN). The characteristics of
this WGNG are high accuracy, high speed and low cost. In
fact, the samples are coded between –8 and +8 with a step
of 1/64. The WGNG has a “(4σ, 1%) normal-like
probability density function (p.d.f.)”, i.e. the absolute
value of the relative error ξX(x) defined as:
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between the p.d.f. of X and the normal distribution N(0,1)
–with mean 0 and standard deviation σ =1– is less than
1% for all |x|<4σ. For implementation with the
FLEX10K100EQC240-1 of Altera, an output rate of 25
MHz with a complexity of 437 LCELL is reported [3]
(information on this WGNG are freely available on a
dedicated website [5]).

In this paper, the work made on the WGNG is extended to
the Colored Gaussian Noise Generator. The objective of
the CGNG described in the paper is to emulate the
Rayleigh Fading Channel (RFC) as the module of
independent phase and quadrature CGNG [7]. This point
is developed in [7] and is not developed further in the
paper.

The same approach as the one used for the WGNG is used
again for the "high quality" CGNG, i.e. a base-band
approach, a FPGA implementation and, moreover, an
exact characterization of the performances of the CGNG
in terms of probability density function (p.d.f) and power
spectral density (p.s.d.).

The paper is organized in four sections. Section 2 analyses
the evolution of the p.d.f. in the case of a Motion Average
(MA) Clarke filter and in the case of a 2nd order Auto
Regressive (AR) Clarke filter. Section 3 studies the
evolution of the theoretical and exact p.s.d. according to
the 2nd order AR filter coefficients and to the dynamic of
the input gaussian distribution using the Clarke filter.



Finally, some conclusions and perspectives are given in
section 4.

2 COMPUTATION OF THE CGNG P.D.F.

A fixed-point format is used for filter processing to speed
up hardware simulation. Hence, rounding factor,
saturation and/or overflow modifies the exact p.d.f. of the
system. Moreover, the input gaussian distribution
generated by the WGNG is not ideal [2]. The aim of this
section is to define the tools needed for the computation of
the exact p.d.f. of the Colored Noise generated, in order to
compare it with the real normal law p.d.f. with (1).

To do so, all the elementary arithmetic operators are
specified both in terms of arithmetic, but also in terms of
operator which modifies the p.d.f. of a random variable
(r.v.). An example of application of this method is given in
section 2.2 for a MA filter and in section 2.3 for an AR
filter.

2.1 The p.d.f. evolution in arithmetic operators

Addition operator.
Let YXZ +=  be the sum of the two r.v. X and Y. The
distribution PZ of the r.v. Z is given by:
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Multiplication operator.
Consider a scalar a coded on Na bits and a r.v. X coded on

N bits (taking its value between [-2N-1+1, 2N-1-1]), the
r.v. Z resulting of the multiplication of X and a will be
represented with N+Na-1 bits. For reducing this dilatation
effect, a rescaling is performed after the multiplication, in
order to suppress the Na-1 least significant bits of the
result. This rescaling preserves the distribution symmetry
and can be associated with a saturation factor (not treated
in the paper). This rescaling is given by:
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where  x  is the greatest integer lower than x and s the
sign bit of xa ×  (s is equal to zero if xa ×  is positive, to
one elsewhere). The p.d.f of the r.v. Z is given by:
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2.2 Case of a 2nd order MA filter

To illustrate the method, let us consider the 2nd order MA
filter shown in Figure 1. Let us assume that all the r.v. are
coded on 3 bits (1 for the sign, 2 for the value). Note that
the distributions resulting of the arithmetic operators are
symmetrical, i.e. f(x)=-f(-x).

WGNG Z-1

3 1

),( Xn Px ),( 1 Xn Px −

))1()3(,( XXYn PPPy ⊗⊕⊗=
( )Xn Px ⊗× 3,3 ( )Xn Px ⊗× − 1,1 1

Figure 1: Example of MA filter

Table 1 gives the evolution of the r.v. distributions in the
Figure 1 for the input distribution XP .

Varia-
ble

Distri-
bution

X=0 X=1

X=-1

X=2

 X=-2

X=3

 X=-3

X=4

 X=-4

xn XP 0.3 0.15 0.1 0.05 0.05

3* xn XP⊗3 0.3 0.15 0.15 0.05 0

1* xn-1 XP⊗1 0.6 0.2 0 0 0

yn YP 0.24 0.18 0.13 0.06 0.01

Table 1: Distribution of the r.v. of the Figure 1

The computation of the exact p.d.f. in the output of a MA
filter of order n is straightforward since all the input
samples are uncorrelated.

2.3 Case of a 2nd  order AR filter

The case of a 2nd ordre AR filter (see Figure 2) is more
complex since the samples Yn are correlated.
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Figure 2: 2nd  order AR filter structure

An original method to compute the exact p.d.f. of the r.v.
Yn in the output of the 2nd order AR filter is presented in
this section. This method takes into account the correlation
between Yn-1 and Yn-2 by the exact computation of the bi-
dimensional r.v. Yn-1,n-2=(Yn-1,Yn-2).
To do so, we proceed by recursion. For n=0, we have the
following initial conditions:
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with 1)(0 =xδ  if x=0, 0 elsewhere.



Then, assuming that at the rank n, 
2,1 −− nnYP  is known,

1, −nnYP  is computed using the AR filter structure. One can

note that 
nYP is obtained from 

1, −nnYP using (6):
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Let us compute ( )),( 1, αγ=−nnYP  for a given couple of
values ( )αγ , . Since α=−1nY  is fixed, we can deduce

from 
2,1 −− nnYP  the law α

2−nYP  given by:
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Let us estimate )/( 1 αα == −nn
Y YYPP n .

In this case, we have the following distributions for the
variables of Figure 2:
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Finally, using the Bayes rules, ( )( )αγ ,1, =−nnYP  is
obtained by:
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Using this method for every value of γ  and α , 
1, −nnYP can

be computed. The iterative computation of 
nYP  is

performed until stationary is reached, i.e.:

∞+
== YYY PPP

nn 1
. The distribution 

∞YP  thus obtained is

then the exact p.d.f. of the r.v. Yn in the output of the 2nd

order AR filter. Figure 3 gives an example of such a
convergence. The filter has a real transfer function defined
by:
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The coefficients of the resulting filter (see Figure 2) are
defined by a=-420/256, b=210/256. An additional
multiplication by c=64/256, using (4) is performed before
entering the filter. These coefficients are coded with 8 bits
after the dot. The results of the first 6 iterations of (8) and
(9) are shown in Figure 3 where only the positive area of
the distributions is shown (note that, on this figure, 

5YP

and 
6YP  are yet nearly equal). The initial input is a

gaussian distribution obtained using the matlab-file
available in [3] with a single accumulation. After 40
iterations, the relative variation of the distribution
becomes negligible (below 10-12), and thus, 

40YP is

assumed to be equal to 
∞YP .

Figure 3: Distribution 
iYP , i=1,...,6

(from up to down)

The distribution thus obtained has a “(4σ, 1%) normal-like
p.d.f.”, as shown in Figure 4.
If the dynamic of the input distribution becomes to low,
then, the relative energy of truncation errors compared to
input signal becomes more important and the output is no
longer “(4σ, 1%) normal-like”. For example, the p.d.f.
obtained with c = 4/256 is given in Figure 4.

Figure 4: Epsilon function according to the factor c

This study can be generalized with different input
distribution and with AR filter that takes into account
saturation or overflow. The main point is that the proposed
method allows the designed to guaranty a given level of
quality to the CGNG p.d.f..

3 COMPUTATION OF THE CGNG P.S.D.

Finally, the exact p.s.d. issued of the CRNG is computed
as the autocorrelation function ( )τYR  Fourier Transform:
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where n is the stationary rank obtained in section 2.3.

To compute ( )τYR , we proceed by recursion:
For each value of χ  we suppose χ=nY ,

( )( )χξ ,, =+ nmnYP  is then computed recursively for
m=1…τ  using the same method than (6), (7) and (8)
starting from the initial conditions:

( ) 1== χnYP  and ( ) ( )( )χξξ ,,11
== ++ nnY YPP

n
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Note that the theoretical p.s.d. is computing using (10)
with the coefficients a=-420/256, b=210/256 and c. These
coefficients correspond to the Doppler of a radiomobile
communication [7] with the following conditions: fc=800
MHz , v=70 KM/s and fe=10 KHz, where fc is the
frequency of the carrier, v the speed of the mobile and fe
the sampling frequency.

Figure 5 and Figure 6 show the theoretical and the exact
p.s.d. generated with the 2nd order filter applied to the
WGN and with the respectively filter coefficients:
a=-420/256, b=210/256, c=4/256 and a=-420/256,
b=210/256, c=64/256.
We can observe that the error between the theoretical and
the exact p.s.d. depends to the factor c in the filter input
(see Figure 2) and decreases when this factor increases.
Moreover, from the Figure 6, we can note that the exact
p.s.d. is very similar to the theoretical p.s.d. when
c=64/256.

Figure 5: Theoretical and exact p.s.d with c=4/256

Figure 6: Theoretical and exact p.s.d. with c = 64/256

4 CONCLUSION

In this paper, tools to compute the statistical properties of a
CGNG, i.e. the p.d.f. and the p.s.d., are described for the
MA filter case and the 2nd order AR filter case (all the
matlab files used to generate the result of this paper are
freely available in [5]). Theoretically, the proposed method
can be generalized to every MA filter and every 2nd order
AR filter. To emulate mobile communication, we consider
the 2nd order Clarke filter. According to the dynamic of the
input gaussian distribution, the approximation of the
distribution N(0,1) has a “(4σ, 1%) normal-like” p.d.f. and
a p.s.d. very similar to the theoretical p.s.d.. Hence, this
design leads to very good performances and the proposed
CGNG can be used for the hardware emulation of the
Rayleigh Fading channel.

Our long-term perspective is to use the CRNG to emulate
Multiple Input Multiple Output (MIMO) channel for new
applications. The objective is to generate a reference
model for various comparison or description solutions, for
example in a normalization case.
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