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1 Abstract

This paper describes a systematic method and an experi-
mental software system for high-level transformations of de-
signs specified at behavioral level. The goal is to transform
the initial design specifications into an optimized data flow
graph (DFG) better suited for high-level synthesis. The opti-
mizing transformations are based on a canonical Taylor Ex-
pansion Diagram (TED) representation, followed by struc-
tural transformations of the resulting DFG network. The sys-
tem is intended for data-flow and computation-intensive de-
signs used in computer graphics and digital signal processing
applications.

2 Introduction

A considerable progress has been made during the last
two decades in behavioral and High-Level Synthesis (HLS),
making it possible to synthesize designs specified using
Hardware Description Languages (HDL) and C or C++ lan-
guage. Those tools automatically generate a Register Trans-
fer Level (RTL) specification of the circuit from a bit-
accurate algorithm description for a given target technology
and the application constraints (latency, throughput, preci-
sion, etc.). The algorithmic description used as input to high-
level synthesis does not require explicit timing information
for all operations of the algorithm and thus provides a higher
level of abstraction than the RTL model. Thanks to high-
level synthesis, the designer can faster and more easily ex-
plore different algorithmic solutions. An important produc-
tivity leap is thus achieved.

However, the optimizations offered by the high-level syn-
thesis tools are limited to algorithms for scheduling and re-
source allocation performed on a fixed Data Flow Graph
(DFG), derived directly from the initial HDL specification
[1]. Modification of the DFG, if any, is provided by rewrit-
ing the initial specification. In this sense the high-level syn-
thesis flow remains “classical”: the algorithm is first de-
fined and validated without any hardware constraints; a bit-
accurate model is then derived to obtain an initial hardware
specification of the design, which becomes input to the HLS
flow. With this approach the quality of the final hardware
implementation strongly depends on the quality of the hand-
written hardware specification. In order to explore other so-
lutions, the user needs to rewrite the original specification,
from which another DFG is derived and synthesized.

Why not then relax the process and start the flow at the
Algorithm level, where the design is given as an abstract
specification, sufficient to generate the required architecture
but without the detailed timing and hardware information.
While this may not be possible for all the designs (in par-
ticular control applications), data-intensive applications can
benefit from this approach. For example, in signal processing
applications that deal with noisy signals there may be several
ways to perform the computation described by the algorithm.
Some of them may lead to an acceptable hardware solution
even if it introduces a moderate level of internal computation
noise (SNR). In general, such a noise will not affect the per-
formance of the system in a significant way, while the result-
ing architecture may give a better hardware implementation
in terms of circuit area, latency, or power.

To give a simple example, in fixed precision computa-
tion, the expressionA · B + A · C is not strictly equal to
A(B + C) in terms of signal-to-noise ratio. Nonlinear op-
erations of rounding, truncation and saturation, requiredto
keep the internal precision fixed, are not applied in the two
expressions in the same order; as a result, the two computa-
tions may differ slightly. Nevertheless, in a common signal
processing application, the two expressions can be consid-
ered identical from the computational view point. The one
with a better hardware cost can be selected for final hardware
implementation. In this example, the expressionA(B + C)
may be chosen as it needs to schedule fewer operators, thus
resulting in smaller latency and/or circuit area.

In this context, the road to automatic transformation of
the design specification that preserves its intended “require-
ment” is open. Such aspecification transformationtool
should allow the designer to express the specification rapidly
and to rewrite it into a form that will optimize the final hard-
ware implementation. Such a modification must take into
consideration the specific design flow and the constraints of
the application.

Automatic specification transformation is an old concept.
In fact, software compilers commonly use such optimiza-
tion techniques as dead code elimination, constant propa-
gation, common subexpression elimination, and others [2].
Some of those compilation techniques are also used by HLS
tools. Several high-level synthesis systems, such as Cyber
[3] and Spark [4], use different methods for code optimiza-
tion (kernel-based algebraic factorization, branch balancing,
speculative code motion methods, dead code elimination,
etc.) but without guaranteeing optimality of the high-level
transformations. For example, very few of them, if any, are
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Figure 1. High-level transformations: a) Canonical TED rep resentation; b),c,) DFGs corresponding to
the original expression F = A · B + A · C; d) DFG for the transformed expression, F = A · (B + C).

able to recognize that the expressionX = (a+b)(c+d)−a ·
c−a·d−b·c−b·d trivially reduces toX = 0. With the excep-
tion for a few specialized systems for DSP code generation,
such as SPIRAL [5], these methods rely on simple manipu-
lations of algebraic expressions based on term rewriting and
basic algebraic properties (associativity, commutativity, and
distributivity) that do not guarantee optimality.

This paper describes a systematic method for transform-
ing an initial design specification into an optimized DFG,
better suited for high-level synthesis. The optimizing trans-
formations are based on a canonical, graph-based representa-
tion, called Taylor Expansion Diagram (TED) [6]. The goal
is to generate a DFG, which - when given as input to a stan-
dard high-level synthesis tool - will produce the best hard-
ware implementation in terms of latency and/or hardware
cost.

To motivate the concept of high-level transformations
supported by the canonical TED representation, consider a
simple computation,F = A · B + A · C, where variables
A, B, C are word-level signals. Figure 1(a) shows the canon-
ical TED representation encoding this expression (discussed
in the next section). Figures 1(b) and (c) show two possi-
ble scheduled DFGs that can be obtained for this expression
using any of the standard HLS tools. We should emphasize
that both solutions are obtained from afixed DFG, derived
directly form the original expression. They have the same
structure and differ only in the scheduling of the DFG opera-
tions. The DFG in Figure 1(b) minimizes the design latency
and requires one adder and two multipliers, while the one
in Figure 1(c) reduces the number of assigned multipliers to
one, at a cost of the increased latency.

Figure 1(d) shows a solution that can be obtained by trans-
forming the original specificationF = A · B + A · C into
F = A · (B + C), which corresponds to adifferent DFG.
This DFG requires only one adder and one multiplier and
can be scheduled in two control steps, as shown in the figure.
This implementation cannot be obtained from the initial DFG
by simple structural transformation, and requiresfunctional
transformation (in this case factorization) of the original ex-
pression which preserves its original behavior.

The remainder of the paper explains how such a transfor-
mation and the optimization of the corresponding DFG can

be obtained using the canonical TED representation. These
optimizing transformations are implemented in the soft-
ware system, TDS, intended for data-flow and computation-
intensive designs used in computer graphics and digital sig-
nal processing applications. TDS system is available on line
[7].

3 Taylor Expansion Diagrams (TED)

Taylor Expansion Diagram is a compact, word-level,
graph-based data structure that provides an efficient way to
represent computation in a canonical, factored form [6]. It
is particularly suitable for algorithm-oriented applications,
such as signal and image processing, with computations
modeled as polynomial expressions.

A multi-variate polynomial expression,f(x, y, ...), can be
represented using Taylor series expansion w.r.t. variablex

around the originx = 0 as follows:

f(x, y, . . .) = f(x = 0) + xf ′(0) +
1

2
x2f”(0) + . . . (1)

wheref ′(x = 0), f ′′(x = 0), etc, are the successive deriva-
tives off w.r.t. x, evaluated atx = 0. The individual terms
of the expression,f(0), f ′(0), f”(0), etc., are then decom-
posed iteratively with respect to the remaining variables on
which they depend (y, .., etc.), one variable at a time.

The resulting decomposition is stored as a directed acyclic
graph, called Taylor Expansion Diagram (TED). Each node
of the TED is labeled with the name of the variable at the
current decomposition level and represents the expression
rooted at this node. The top node of the TED represents the
main functionf(x, y, . . .), and is associated with the first de-
composing variable,x. Each term of the expansion at a given
decomposition level is represented as a directed edge from
the current decomposition node to its respective derivative
term,f(0), f ′(0), f”(0), etc. Each edge is labeled with the
weight, representing the coefficient of the respective termin
the expression.

Most of the TEDs presented in this work arelinear TEDs,
representing linear multi-variate polynomials and containing
only two types of edges:multiplicative(or linear) edges, rep-
resented in the TED as solid lines; andadditiveedges, rep-
resented as dotted edges. Nonlinear expressions can be triv-
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ially converted into linear ones, by transforming each occur-
rence of a nonlinear termxk into a productx1 · · ·xk, where
xi = xj . Such a transformed expression is then represented
as a linear TED.

The expression encoded in the TED graph is computed as
a sum of the expressions of all the paths, from the TED root
to terminal 1. An expression for each path is computed as
a product of the edge expressions, each such an expression
being a product of the variable in its respective power and
the edge weight. Only non-trivial terms, corresponding to
edges with non-zero weights, are stored in the graph.

As an example, consider an expressionF = A ·B +A ·C
represented by the TED in Figure 1(a). This expression is
computed in the graph as a sum of two paths from TED
root to terminal node 1:A · B andA · B0 · C = A · C.
In fact, TED encodes such an expression infactored form,
F = A · (B + C), since variableA is common to both paths.
This is manifested in the graph by the presence of the subex-
pression(B + C), rooted at nodeB, which can be factored
out. This is an important feature of the TED representation,
employed by TED-based factorization and common subex-
pression extraction described in the remainder of the paper.

In summary, TED represents finite multi-variate polyno-
mials and maps word-level inputs into word-level outputs.
TED is reduced and normalized in a similar way as BDDs
[8] and BMDs [9]. Finally, the reduced, normalized and or-
dered TED is canonical for a given variable order. Detailed
description of the TED representation and its application to
verification can be found in [6].

4 TED-based Decomposition

The principal goal of algebraic factorization and decom-
position is to minimize the number of arithmetic operations
(additions and multiplications) in the expression. A simple
example offactorizationis the transformation of the expres-
sion F = AB + AC into F = A(B + C), referred to in
Figure 1, which reduces the number of multiplications from
two to one. If a sub-expression appears more than once in the
expression, it can be extracted and replaced by a new vari-
able, which reduces the overall complexity of an expression
and its hardware implementation. This process is known as
common subexpression elimination(CSE). Simplification of
an expression (or of a set of expressions) by means of factor-
ization and CSE is commonly referred to asdecomposition.

Decomposition of algebraic expressions can be performed
directly on the TED graph. As mentioned earlier, TED al-
ready encodes the expression in a compact, factored form.
The goal of TED decomposition is to find a factored form
that will produce a DFG with minimum hardware cost of
the final, scheduled implementation. This is in contrast to
a straightforward minimization of the number of operations
in an unscheduled DFG, that has been the subject of all the
known previous approaches [10, 11].

This section describes two methods for TED decomposi-
tion. One is based on the factorization and common subex-
pression extraction performed on a TED with a given vari-
able order, without modifying that order. This method is ap-
plicable to generic expressions, without any particular struc-

ture. The other method is a dynamic CSE, where common
subexpressions are derived by dynamically modifying TED
variable order in a systematic way. This method is partic-
ularly suitable for well-structured DSP transforms, such as
DCT, DFT, WHT, etc, where they can discover common
computing patterns, such as butterfly.

4.1 Static TED Decomposition

The static TED decomposition approach extends the orig-
inal cut-based decomposition method of Askar [10]. Basic
idea of the cut-based decomposition is to identify in the TED
a set ofcuts, i.e., additive edges and multiplicative nodes
(called dominators) whose removal separates the graph into
two disjoint subgraphs, Each time an additive or multiplica-
tive cut is applied to a TED, a hardware operator (ADD or
MULT ) is introduced in the DFG to perform the required op-
eration on the two subexpressions. This way, afunctional
TED representation, is eventually transformed into astruc-
tural data flow graph (DFG) representation. It has been
shown that different cut sequences generate different DFGs,
from which the DFG with best property (typically latency)
can be chosen.

By construction, the cut-based decomposition method is
limited to a disjoint decomposition. Many TEDs, however,
such as the one shown in Figure 2(a), do not have a disjoint
decomposition property and must be handled differently.

The decomposition described here applies to an arbitrary
TED graph (linearized, if necessary), with both disjoint and
non-disjoint decomposition. The TED decomposition is ap-
plied in a bottom-up fashion by iteratively extracting com-
mon terms (sums and products of variables) and replacing
them with new variables. The method is based on a series
of functional transformations that decompose the TED graph
into a set of irreducible TEDs, from which a final DFG repre-
sentation is constructed. The decomposition is guided by the
quality of the resulting scheduled DFG (measured in terms
of its latency or resource utilization) and not by the number
of operators in an unscheduled DFG.

The basic procedure of the TED decomposition is thesub
operation, which extracts a subexpressionexprfrom the TED
and substitutes it with a new variablevar. First, the variables
in the expressionexprare pushed to the bottom of the TED,
respecting the relative order of variables in the expression.
Let the top-most variable inexpr bev. Assuming thatexpr
is contained in the original TED, this expression will appear
in the reordered TED as a subgraph rooted at nodev. The
extraction ofexpris accomplished by removing the subgraph
rooted atv and connecting the reference edge(s) to terminal
node 1.

The extraction operation is shown in Figure 2(a,b), where
subexpressionexpr = (c + d) is extracted fromF =
(a + b)(c + d) + d. If an internal portion of the extracted
subexpression is used by other portions of the TED, i.e., if
any of the internal subgraph nodes is referenced by the TED
at nodes different than its top nodev, that portion ofexpr is
automatically duplicated before extraction and variable sub-
stitution. This is also visible in Figure 2(b), with noded
being duplicated in the process.
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TED decomposition is performed in a bottom-up manner,
by extracting simpler terms and replacing them with new
variables (nodes), followed by a similar decomposition of
the resulting top-level level graph. The final result of the
decomposition is a series ofirreducibleTEDs, related hierar-
chically. Specifically, the decomposing algorithm identifies
and extracts sum-terms and product terms in the TED and
substitutes them by new variables, using thesub operation
described above. Computational complexity of the extrac-
tion algorithms is polynomial in the number of TED nodes.
Each new term constitutes anirreducible TEDgraph, which
is then translated directly into a DFG composed of the op-
erators of one type (adders for sum-term, and multipliers for
product term).

The TED decomposition and DFG construction is illus-
trated with a simple example in Figure 2. This TED does not
have a single additive cut edge that would separate the graph
disjunctively into two disjoint subgraphs; neither does ithave
a dominator node that would decompose it conjunctively into
disjoint subgraphs, and hence cannot be decomposed using
cut-based method. The decomposition starts with identifying
and extracting expressionS1 = c+d, followed by extracting
S2 = a + b, represented as an irreducible TED. Note that
termd is automatically duplicated in this procedure.
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Figure 2. Static TED decomposition; (a) Original TED for
expressionF0 = ac+bc+ad+bd: (b) TED after extracting
S1 = c + d; (c) Final TED after extractingS2 = a + b,
resulting in Normal Factored FormF0 = (a+b)·(c+d)+d.

Product terms can be identified in the TED as a set of
nodes connected by multiplicative edges, such that the inter-
mediate nodes in the series do not have any additive incom-
ing or outgoing edges. Only the starting and ending nodes
can have incident additive edges. In Fig. 2(a) no product
terms can be found at this decomposition level. A sum term
appears in the TED graph as a set of variables, connected by
multiplicative edges to a common node and linked together
by additive edges. In Fig. 2(a) two such sum-terms can be
identified and extracted as reducible TEDs:S1 = c + d and
S2 = a + b. Each irreducible subgraph is then replaced by
a single node in the original TED to produce TED shown
in Fig. 2(c). This procedure is repeated iteratively until the
TED is reduced to the simplest, irreducible form. The re-
sulting TED is then subjected to the final decomposition us-
ing the fundamental Taylor expansion procedure. The graph
is traversed in a topological order, starting at the root node.

At each visited nodev the expressionF (v) is computed as
F (v) = F0 + v · F1, whereF0 is the function rooted at the
first node reached fromv by an additive edge, andF1 is the
function rooted at the first node reached fromv by a multi-
plicative edge. Using this procedure, the TED in Figure 2(c)
produces the decomposed expressionF = S2 ·S1 +d, where
S1 = c + d andS2 = a + b.

4.2 Dynamic TED Factorization

An alternative approach to TED decomposition is based
on the dynamic factorization and common subexpression
elimination (CSE). This approach is illustrated with an exam-
ple of the Discrete Cosine Transform (DCT), used frequently
in multimedia applications. The DCT of type 2 is defined as

Y (j) =

N−1
∑

k=0

xkcos[
π

N
j(k +

1

2
)], k = 0, 1, 2, ..., N − 1

and computed by the following algorithm:

for (j = 0; j < N ; j++)
{ tmp = 0;
for (k = 0; k< N ; k++)

tmp+=x[k]*cos(pi*j*(k+0.5)/N);
y[j] = tmp; }

It can be represented in a matrix form asy = M · x,
wherex andy are the input and output vectors, andM is the
transform matrix composed of the cosine terms, eq. (2).
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(2)

In its direct form the computation involves 16 multipli-
cations and 12 additions. However, by recognizing the de-
pendence between the cosine terms it is possible to express
the matrix using symbolic coefficients, as shown in the above
equation. The coefficients with the same numeric value are
represented by the same symbolic variable. The matrixM

for the DCT example has four distinct coefficients,A, B, C,
andD (for simplicity, we neglect the fact thatA = cos(0) =
1). This representation makes it possible to factorize the ex-
pressions and subsequently reduce the number of operations
to 6 multiplications and 8 additions, as shown by the equa-
tions (3). This simplification can be achieved by extracting
subexpressions(x0+x3), (x0−x3), (x1+x2), and(x1−x2),
shared between the respective outputs, and substituting them
with new variables.

y0 = A · ((x0 + x3) + (x1 + x2))

y1 = B · (x0 − x3) + C · (x1 − x2)

y2 = D · ((x0 + x3) − (x1 + x2))

y3 = C · (x0 − x3) − B · (x1 − x2) (3)
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The initial TED representation for the DCT matrix in eq.
(2) is shown in Figure 3(a). The subsequent parts of the fig-
ure show the transformation of the TED that produces the
above factorization.

The key to obtaining efficient TED-based factorization
and common subexpression extraction (CSE) for this class
of DSP design is to represent the coefficients of the matrix
expressions as variables and to place them on top of the TED
graph. This is in contrast to a traditional TED representa-
tion, where constants are represented as labels on the graph
edges. In the case of the DCT transform, the coefficients
A, B, C, D are treated as symbolic variables and placed on
top of the TED, as shown in Figure 3(a).

The candidate expressions for factorization in such a TED
are obtained by identifying the nodes with multiple parent
(reference) edges. The subexpression rooted at such nodes
are extracted from the graph and replaced by new variables.

The TED in Figure 3(a) exposes two subexpressions for
possible extraction: 1) the rightmost node associated with
variablex0 (show in red), the root of subexpression(x0 −
x3); and 2) the rightmost node associated with variablex1

(pointed to by nodesC, B), which is the root of subexpres-
sion (x1 − x2). The first expressions is extracted from the
graph and substituted with a new variable,S1 = (x0 − x3).
VariableS1 is then pushed to the top of the diagram, below
constant nodes, as shown in Figure 3(b). This new structure
exposes another expression to be extracted, namelyS2 =
(x0 + x3). Once the subexpression is extracted, variableS2
is also pushed up. The next iterations of the algorithm leads
to substitutionsS3 = (x1 − x2) andS4 = (x1 + x2), re-
sulting in a final TED shown in Figure 3(c). At this point
there are no more original variables that can be pushed to
the top, and the algorithm terminates. As a result, the above
TED-based common subexpression elimination results in the
following expressions:

y0 = A · (S2 + S4), y1 = B · S1 + C · S3

y2 = D · (S2 − S4), y3 = C · S1 − B · S3,

where:
S1 = (x0 − x3), S2 = (x0 + x3), S3 = (x1 − x2) and
S4 = (x1 + x2).

Considering thatA = 1, the computation of such opti-
mized expressions requires only 5 multiplications and 8 ad-
ditions, a significant reduction from the 16 multiplications
and 12 additions of the initial expressions.

5 DFG Generation and Optimization

The TED decomposition procedures described in the pre-
vious section produce simplified algebraic expressions in
factored form. Each addition operation in the expression cor-
responds to an additive edge of some irreducible TED, and
each multiplication corresponds to a multiplicative edge in
an irreducible TED, obtained from the TED decomposition.
We refer to such a form asNormal Factor Form(NFF) of the
TED.

It can be shown that normal factored form is minimal and
unique for a given TED with fixed variable ordering. The

form is minimal in the sense that it requires minimum num-
ber of operators of each type (adders and multipliers) to de-
scribe the algebraic expression encoded in the TED. No other
expression that can be derived from this TED (with the given
variable order) can have fewer operations. For example, the
NFF for the TED in Fig. 1 isF = A ·(B+C), with oneADD

and oneMULT operator. Other forms, such asAB + AC,
have two multiply operators, which are not present in this
graph (the multiplicative edges leading to the terminal node
1 represent trivial multiplications by 1 and do not count).
Such a form is alsounique, if the order of variables in the
normal factored form is compatible with that in the TED. In
the above example, the formsA(C + B) or (B + C)A are
not NFFs, since the variable order in those expressions is not
compatible with that in the TED in Fig. 1(a).

The concept of normal factored form can be further clar-
ified with the TED in Fig. 2. The normal factored form for
this TED isF0 = (a + b) · (c + d) + d. It contains three
adders, corresponding to the three additive edges in the ir-
reducible TEDs,S1, S2, and the top-level TED,F0, shown
in Fig. 2(c); and one multiplier corresponding to the multi-
plicative edge in the TED forF0, in Fig. 2(c). This is the
minimum number of operators that can be obtained for the
TED with the variable order{a, b, c, d}. The form is unique,
since the ordering of variables in each term is compatible
with the ordering of variables in the TED.

It should be obvious from the above discussion that the
NFF for a given TED depends only on the structure of the ini-
tial TED and the ordering of its variables. Hence, a TED vari-
able ordering plays a central role in deriving decompositions
that will lead to efficient hardware implementations. Several
variable ordering algorithms have been developed for this
purpose, including static ordering and dynamic re-ordering
schemes, similar to those in BDDs. However, TED ordering
is driven by the complexity of the NFF and the structure of
the resulting DFGs, rather than by the number of TED nodes.

5.1 Data Flow Graph Generation

Once the algebraic expression represented by TED has
been decomposed, a structural DFG representation of the
optimized expression is obtained by replacing the algebraic
operations in the normal factored form into hardware oper-
ators of the DFG. However, unlike Normal Factored Form,
the DFG representation is not unique. While the number
of operators remains fixed (dictated by the ordered TED),
the DFG can be further restructured and balanced to mini-
mize its latency. In addition to replacing operator chains by
logarithmic trees, standard logic synthesis methods, suchas
collapsing and re-decomposition, taking into consideration
signal arrival times can be used for this purpose [1].

An important feature of the TED decomposition, con-
cluded by the generation of an optimized DFG, is that it has
insight into the final DFG structure. Different DFG solu-
tions can be generated by modifying the TED variable or-
der, performing static and dynamic factorization, followed
by a fast generation of the minimum-latency DFG. This ap-
proach makes it possible to minimize the hardware resources
or latency in the final,scheduledimplementation, not just
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Figure 3. a) Initial TED of DCT2-4, b) TED after extractingS1 = (x0 − x3); c) final TED after extractingS2 = (x0 + x3), S3 =
(x1 − x2) andS4 = (x1 + x2), resulting in the final factored form of the transform.

the number of operations in the DFG graph. The solution
that meets the required objective is selected.

In summary, TED variable ordering, static and dynamic
factorization/CSE, and DFG restructuring, are at the core of
the optimization techniques employed by TED decomposi-
tion.

5.2 Replacing Multipliers by Shifters

Multiplications by constants are common in designs in-
volving linear systems, especially in computation intensive
applications such as DSP. It is well known that multipli-
cations by integers can be implemented more efficiently in
hardware by converting them into a sequence of shifts and
additions or subtractions. Standard techniques are available
to perform such a transformation based on Canonical Signed
Digit (CSD) representation. However, these methods do not
address common subexpression elimination or factorization
involving shifters. In this section we present a systematic
way to transform integer multiplications into shifters using
the TED structure. This is done by introducing a special ‘left
shift’ variableL into the TED, while maintaining its canonic-
ity. The modified TED can then be decomposed using meth-
ods described earlier.

First, each integer constantC is represented in the CSD
format asC =

∑

i(ki · 2
i), whereki ∈ (−1, 0, 1). By intro-

ducing a new variableL to replace constant 2,C can be rep-
resented as

∑

i(ki · L
i). The termLi in this expression rep-

resents left shift byi bits. The TED with the shift variables
is then subjected to a regular TED decomposition. Finally,
in the DFG generated by the TED decomposition the terms
involving shift variables,Lk, are replaced byk-bit shifters.

The example in Figure 4 illustrates this procedure for the
expressionF = 7a + 6b. The original TED is shown in

Figure 4(a) and the corresponding DFG with constant mul-
tipliers in Figure 4(b). The original expression is trans-
formed into an expression with the shift variableL: F =
(L3 − 1) · a + (L3 −L1) · b = L3 · (a + b)− (a +L · b), and
represented by a non-linear TED shown in Figure 4(c). Each
edge of the TED is labeled with a pair(∧p, w), where∧p rep-
resents the power of variable (stored as the node label), and
w represents the edge weight (multiplicative constant) asso-
ciated with this term. For example, the edge labeled(∧3, 1)
coming out of variableL represents a non-linear termL3 · 1.
The TED subgraph rooted at the right node, labeleda, rep-
resents expressiona + b. The dotted between nodesa andb,
labeled(∧0, 1), simply represents an addition.

The modified TED is then transformed into a DFG, where
multiplications with inputsLk are replaced byk-bit shifters,
as shown in Figure 4(d). The optimized expression corre-
sponding to this DFG isF = ((a + b) << 2− b) << 1− a,
where the symbol “<< k” refers to left shift byk bits. This
implementation requires only three adders/subtracters and
two shifters, a considerable gain compared to the two multi-
plications and one addition needed to implement the original
expression.

6 TDS System

The TED decomposition described here was implemented
as part of a prototype system, TDS, shown in Fig. 5. The
input to the system is the design specified in C/C++, behav-
ioral HDL, or given in form or a DSP matrix. The system
can also internally generate matrices for some of the stan-
dard linear DSP transforms, such as DCT, DFT, WHT, etc.,
to be used as input. The left part of the figure shows the tra-
ditional high-level synthesis flow, which extracts the control
data flow (CDFG) from the initial specification and performs
standard high-level synthesis operations: scheduling, alloca-
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Figure 4. Replacing constant multiplications by shift op-
erations: (a) Original TED forF0 = 7a + 6b; (b) Initial
DFG with constant multipliers; (c) TED after introducing
shift variableL; (d) Final DFG with shifters, corresponding
to the expressionF = ((a + b) << 2 − b) << 1 − a.

tion and resource binding. The right part of the figure shows
the actual TDS optimization flow. It transforms the data flow
graph extracted from the initial specification into an opti-
mized DFG using a host of TED-based decomposition and
DFG optimization techniques, and passes the modified DFG
to a high-level synthesis tool. Currently, an academic syn-
thesis tool, GAUT [12], is used for front-end parsing and for
the final high level synthesis, but any of the existing HLS
tools can be used for this purpose (provided that compatible
format interfaces are available).

The DFG extracted from the initial specification is trans-
lated into a hybrid network composed of islands of functional
blocks, represented using TEDs, and other operators (“struc-
tural” elements). Specifically, TEDs are constructed from
polynomial expressions that have finite Taylor expansion, de-
scribing arithmetic components of the design (adders, mul-
tipliers, multiplexers) as well as “if-then-else” statements.
Those operators that cannot be represented as functional
TEDs (such as comparators, saturators, etc.), are considered
as black boxes in the hybrid network.

TDS optimizes the resulting hybrid TED/DFG network
and transforms it into a final DFG using TED- and DFG-
related optimizations. The entire DFG network is finally re-
structured to minimize the latency. The system provides a
set of interactive commands and optimization scripts that in-
clude: variable ordering, TED linearization, static and dy-
namic factorization, decomposition, replacement of constant
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Figure 5. TDS system flow.

multiplications by shifters, DFG construction, balancing, etc.

7 Experimental Results

The system was tested on a number of practical designs
from computer graphics applications, filters and DSP de-
signs. Table 1 compares the implementation of aquintic
splinefilter using: 1) the original design written in C; 2) the
design produced by CSE decomposition system of [11]; 3)
and the design produced by TDS. All DFGs were synthe-
sized using GAUT. The top row of the table reports the num-
ber of arithmetic operations (adders, multipliers, shifters,
subtractors) for unscheduled DFG. The remaining rows list
the actual number of resources used for a given latency
in the scheduled DFG; and the implementation area using
GAUT (datapath only). Minimum latency for each solution
are shown in bold. The results for circuits that cannot be
synthesized for a given latency are marked with ’–’ (over-
constrained).

Design
Original CSE TDS
design solution solution

Latency
+,×,≪,− Area +,×,≪,− Area +,×,≪,− Area

(ns)

Q
ui

nt
ic

S
pl

in
e

DFG→ 5,28,2,0 5,13,3,0 6,14,4,0
L=110 – – – – 1,5,1,0 460
L=120 – – – – 2,4,2,0 422
L=130 – – – – 1,4,1,0 377
L=140 – – 1,4,1,0 377 1,3,1,0 294
L=150 – – 1,3,1,0 294 1,3,1,0 294
L=160 – – 1,3,1,0 211 1,3,1,0 294
L=170 – – 1,2,1,0 211 1,3,1,0 294
L=180 1,5,1,0 460 1,2,1,0 211 1,2,1,0 211

Table 1. Quintic Spline achivable latency and area for
different designs. The area reported is for GAUT.

As seen in the table the CSE solution has the smallest
number of operations in theunscheduled DFG, and the la-
tency of 140 ns. The latency of DFG obtained by TDS was
110 ns, i.e., 21.4% faster, even though it had more DFG oper-
ations. And for the minimum latency of 140 ns, obtained by
CSE, TDS produced circuit implementation with area 22%
smaller than CSE. Similar behavior has been observed for
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all the tested designs. In all cases the latency of DFGs pro-
duced by TDS was smaller; and (with an exception for Quar-
tic Spline design), all of them also had smaller hardware area
for the minimum latency produced by CSE.

Design
TDS vs

Original CSE
Latency (%) Area (%) Latency (%) Area (%)

SG Filter 25.00 27.62 0.00 20.73
Cosine 38.88 50.42 8.33 9.45
Chrome 9.09 0.00 9.09 11.86
Chebyshev 41.17 48.68 16.66 15.23
Quintic 38.88 54.13 21.42 22.02
Quartic 37.50 30.50 23.07 -28.23
VCI 4x4 0.00 42.98 30.00 2.40
Average 27.22 36.33 15.51 7.64

Table 2. Percentage improvement of TDS vs Original
and CSE on achievable latency; and area at the minimum
achievable latency.

Table 2 summarizes the implementation results for these
benchmarks. We can see that the implementations obtained
by TDS have latency that is on average 15.5% smaller than
that of CSE, and 27.2% smaller than the original DFGs. The
hardware area of the TDS solutions for the reference latency
(defined as the minimum latency obtained by the other two
methods), is on average 7.6% smaller than that of CSE, and
36.3% smaller than the original design, without any DFG
modification. These are significant improvements.

8 Conclusions

A new approach to the optimization of initial specifica-
tion of data flow designs have been implemented that yields
DFGs better suited for high-level synthesis and produces bet-
ter hardware implementations than currently available. The
TED-based optimization system guides the algebraic decom-
position to obtain solutions with minimum latency and/or
with minimum cost of operators in a scheduled DFG. The op-
timized DFGs produce designs with lower latency than those
obtained by a straightforward minimization of the number of
arithmetic operations in the expression; and for the minimum
latency obtained by the other methods, the generated designs
require on average smaller hardware area.

The TDS system, developed as part of this research,
goes beyond simple algebraic decomposition. It allows to
handle arbitrary data-flow designs and algorithms written in
C/C++ to optimized their data flow graphs prior to high-level
synthesis. While currently the TDS system is integrated with
an academic high-level synthesis tool, GAUT, we believe
that it could be successfully used as a pre-compilation step
in a commercial synthesis software, such as Catapult C. In
this case, the optimized DFGs can be translated back into
C (while preserving the optimized structure), and used as
input to HLS, instead of the original DFGs. Finally, to turn
TDS into a commercial-quality system, the issue of finite
precision of the operators needs to be addressed. This is a
subject of an ongoing work.
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