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Abstract

In this letter, a new metric for fast and efficient performance eval-

uation of iterative decoding algorithms is proposed. It is based on the

estimation of distance between probability density function (pdf) of the

symbol log likelihood ratio (LLR) of optimal and suboptimal iterative

decoding algorithms. We apply the notion of entropy to evaluate this

function. The metric is tested on data sets from the different sub opti-

mal algorithms for the duo binary turbo codes used in WiMax(802.16e)

application and the (251,502) Galois Field (26) LDPC codes. Experi-

mental results confirm that the values of the proposed metrics correlate

well with the BER performance of the suboptimal implementation of

the iterative decoding algorithm.

1 Introduction

LDPC codes and Turbo codes are among the known near Shannon limit

codes that can achieve very low bit error rates for low Signal-to-Noise Ratio

(SNR) applications [1],[2]. Efficient implementations with emphasis on small
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area, low power consumption and high throughput are of emerging impor-

tance. The achievement of such requirements often implies the adoption of

sub-optimal choices and simplifications that affect code performance. Due to

the large number of options to be tested, efficient methods for performance

evaluation are of great interest.

The principle of Bit Error Rate estimation with the Monte-Carlo (MC)

simulation is well known: generate a codeword, add some gaussian noise with

a given standard deviation (given by the SNR), perform a given number of

iterations of the decoding algorithm, then from the probability of symbol

obtained (of Log-Likelihood Ratio), take a decision. Finally, if uncoded and

decoded codewords differ, compute the number of error. This process is it-

erated a given number of time. If one looks at the set of final distributions of

probability before decision and the final BER, a huge amount of information

has been discarded. The question arise if it is possible to take into account

the information before decision to improve the BER estimation?

In [3] it was shown that use of LLR values for soft decision simulations

offers practical advantage of numerical stability over the conventional MC

simulations. In this paper, we propose to use the value of probability before

decision in a different application. As symbol LLRs are a tool to express

symbol probabilities in iterative algorithms, similarty between pdfs of LLRs

at the end of certain number of iterations for the two cases of an optimal

and a sub optimal version of algorithm could be an effective and quick

method to determine the performance of the sub optimal version relatively

to the optimal one. Our project is then to find a metric between two pdf

distributions so that, metric and performance degradation are well related.
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However, the task of finding a significant metric between two LLR dis-

tribution is not trivial. Classical distribution distance defined in [4] does not

give any significant correlation. The use of a Manhattan distance between

two pdf (sum of absolute values of probability differences) does not also lead

to good correlation. This can be explained by the fact that, from a decoding

point of view, a probability of a symbol value of 10−6 and 10−12 are rather

different, which is not the case when Manhantan distance is used. These

considerations bring us to search a metric that takes into account both ab-

solute difference and ratio of magnitude. At this point, a metric derived

from the entropy definition of Shannon [5] was tested with success. The

information entropy H(X) of a discrete random variable X that can take on

possible values x 1...xn is given as:

H(X) = −
n∑

i=0

p (xi) log2p (xi) (1)

where p(xi) = Pr(X=xi) is the probability mass function of X and entropy

relates to the representation of information by quantifying its uncertainty.

2 The Distance Metric Definition

In a Non-binary iterative decoding algorithm (Turbo or LDPC code) ex-

changed messages can be represented as Log Likelihood Ratio (LLR) vec-

tors. A q element probability vector P = (p0, p1, . . . , pq−1) is a vector of

real numbers such that pi > 0 for all i and
∑q−1

i=0 pi = 1. The LLR vector

associated to P is Λ = (λ0, λ1, . . . , λq−1) with λi = log pi

p0
, i = 0, . . . , q − 1.
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Symbol probability as a function of LLR values is expressed as follows:

pi =
eλi

eλ0 + eλ1 + · · · · · · + eλq−1
(2)

where λi is the symbol LLR for i=0,1...,q-1. In order to quantify the impact

of sub-optimal iterative decoding algorithms on error performance, we apply

the concept of entropy to the databases D and D̃ composed by two sets of

N q element vectors, each one corresponding to symbol probabilities pn
i and

p̃n
i of optimal and sub optimal decoding cases respectively. Extending the

entropy equation (1) we define distance d in the form :

d(D, D̃) =
∑N−1

n=0

∑q−1
i=0 (|pn

i − p̃n
i |) (log2 |pn

i − p̃n
i |)∑N−1

n=0

∑q−1
i=0 pn

i log2pn
i

(3)

The system model is shown in Figure 1: the extrinsic probabilities be-

ing fed to the distance evaluation block belong to optimal and sub-optimal

databases, D and D̃ respectively. The distance metric that we use is only

significant if the two distributions are close. For example, lets consider, the

two distribution (1,0,0,0) and (0,1,0,0) for a duo-binary turbo-code: from a

decoding point of view, the result is different but the distance is equal to 0.

At a given signal to noise ratio (SNR) we have the couples (∆BER, d)

where ∆BER is defined as:

∆BER = log10

(
BERsub

BERopt

)
(4)

BERsub and BERopt correspond to the bit error rates for suboptimal and

optimal algorithms respectively at a given SNR. The relationship between
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∆BER and d(D, D̃) can be classified into following possibilities :

Case1 (Excellent − Situation): Find d and function ζ so that

∆BER = ζ
{
d

(
D, D̃

)}
(5)

around a common point and in a interval of interest for making design

choices.

Case2 (Usefull − Situation): Find d so that the relation order of ∆BER

and d is respected. This means that if two design choices, 1 and 2, result

into suboptimal algorithms with performance given by ∆BER1< ∆BER2,

then definition in equation(3) will calculate an higher distance for choice 2

: d(2)>d(1).

3 Experimental Results

Above mentioned Case 1 and Case 2 are subsequently established in the

following experiments. A duo binary turbo code used in WiMax(802.16e)

application (block length K=960 and rate=0.333) and the (251,502) Galois

Field (26) LDPC code are used.

3.1 WiMax Turbo Optimal Quantization of Channel Input

Fixed point arithmetic and quantization result in additional noise in the

turbo decoding system. As the rounding off noise is fixed for a given struc-

ture, increasing the signal level to quantizer could result in better perfor-

mance. However it cannot be increased too much because it may cause
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overflow as the dynamic range of quantizer is exceeded. Thus a optimal

scaling factor α for recieved symbol is to be found which results in the best

error performance of the decoder [6]. In order to validate our distance met-

ric we evaluate ∆BER varying the scaling factor α. Similar experiment is

performed using the proposed distance metric. To numerically obtain the

∆ BER we use channel input representation with large number of bits, thus

making it a near floating point representation. BER values obtained for this

floating point representation of the algorithm is used as the reference value

(BERopt in equation (4)).

Figure 2 illustrates the variation of couple (∆BER, d) for different scaling

factors α. The value of α varies from 0.6 to 2.4 with step 0.2. The correlation

curves are plotted for different Eb/N0 and different code rates. The BER

values are of the order of 10−3 and 10−4 for the Eb/N0 values of 0.77dB and

0.87dB respectively. The number of bits N used for Monte Carlo simulation

are 100 times higher than for the distance metric simulations. It can be seen

that that couple (∆BER, d) gives the same optimal value of scaling factor α

at 1.6 for code rate R=0.333 and at 1.2 for R=0.5, thus validating the Case

1 mentioned previously.

3.2 WiMax Turbo Extrinsic Bit-Width Optimization

In serial, deterministic interleaver based or network on chip (NOC) based

implementation of turbo decoders, size of the extrinsic memory, complexity

of the interleaver and the communication resources of the network on chip

greatly increase with the bit width of the extrinisic information. In [7]

it was shown that least significant bit (LSB) drop-append combined with
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most significant bit (MSB) clipping can be an useful method for countering

these effects. We utilise this bit width optimization method to establish

the correlation between BER performance and proposed distance metric.

The suboptimal database corresponds to symbol probabilities in LSB drop-

append and MSB clipped version of the algorithm, while algorithm with 8

bit fixed point representation for the extrinsics is assumed to be optimal.

The correlation plots between ∆BER and distance metric for suboptimal

algorithms (shown by the dots in the curves) corresponding to 1, 2 and 3

LSBs drop append and 1, 2 MSB clip respectively is presented in Figure 3.

The two curves correspond to different Eb/N0. The number of bits N used

for simulation for distance metric simulations are lesser by a magnitude order

of 100 compared to the Monte Carlo simulations performed to obtain the

BER values. We can observe that for a given Eb/N0 the correlation order is

always respected between the bit width optimized sub optimal algorithms:

in other words, ∆BER and distance both increase when moving from one

fixed point representation to a less accurate one. The correlation order also

holds true across different Eb/N0.

3.3 LDPC GF(26) Case

The experiment were performed over an LDPC code (251,502) in GF (64).

The optimal algorithm is considered where 64 messages are sent from each

VN to CN while the sub optimal algorithms are related to sending lower

number of messages (nm) like 8,16,24 and 32 etc [8]. Using the optimal algo-

rithm, we have generated a set of N= 100*502 ,64 element vector. The first

set corresponds to the intrinsic probability values of 100 frames sucessfully
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decoded with 20 iterations. The second corresponds to the extrinsic prob-

abilty values representing the decided symbol probabilities at the variable

nodes. After processing the set of intrinsic probabilities with the subopti-

mal algorithm using different numbers of messages, distance between the

optimal and suboptimal algorithm for each nm is evaluated.

In Figure 4 correlation between ∆FER and distance for these suboptimal

algorithms (shown by the dots in the curves) is depicted. Slope of the curve

provides the quantitative correlation between the proposed distance metric

and FER simulations albeit with faster simulation time.

4 Conclusion

We present a novel error performance assessment metric for sub optimal iter-

ative decoding algorithms. It takes into account LLRs measured at the end

of certain iteration to estimate how far is the pdf of the suboptimal symbol

probabilities from the optimal symbol probabilities. We extended the con-

cept of entropy to evaluate this distance. Experimental results confirm that

the values of the proposed metric correlate well with corresponding BER

performance analysis of the sub optimal iterative algorithms giving a signif-

icant improvement in terms of simulation time by at least a factor of 100.

The work provides us a practical tool to quickly assess the performance of

suboptimal iterative decoding algorithm and once a sub optimality domain

of interest has been obtained, further accurate analysis can be performed

using more classical approaches.

We know that other tools of the information theory can be used for our
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project (like mutual information, EXIT chart and so on) but we didn’t find

yet a usefull way of using it for our problem. This question is still open.
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Figure 1: Model for Distance Evaluation System. Extrinsic probabilities
belong to optimal and sub-optimal databases, D and D̃ respectively.
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Figure 2: Correlation curve for ∆BER and Distance variation with α. The
correlation curves are represented for Eb/N0 of 0.77 dB for code rates 0.33
and 0.5 and Eb/N0 of 0.87 dB for code rate 0.33. The value of α varies from
0.6 to 2.4 with step 0.2.
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