
1

Generic description and synthesis of LDPC decoders
Fr�ed�eric Guilloud, member, IEEE, Emmanuel Boutillon, member, IEEE,

Jacky Tousch, member, IEEE, and Jean-Luc Danger, member, IEEE

Abstract|Through a rapid survey of the architec-
ture of Low-Density Parity-Check (LDPC) decoders,
this paper proposes a general framework to describe
and compare LDPC decoder architectures. A set of
parameters makes it possible to classify the scheduling
of iterative decoders, memory organization and type
of check node processors and variable node processors.
Using the proposed framework, an e�cient generic
architecture for non-
ooding schedules is also given.

I. Introduction

Low-density parity-check (LDPC) codes [1] perform
very close to the Shannon limit. Therefore they are being
proposed more and more frequently to standardization
committees. The �rst one to choose LDPC codes as a
standard was the update of the digital video satellite
broadcasting named DVB-S.2. After some years' theoret-
ical studies, LDPC codes are now entering the industrial
range of interest.

The performance of LDPC codes can be obtained thanks
to a probabilistic and iterative decoding of the received
codewords. Many di�erent LDPC decoders have been
described in the literature, and many LDPC codes have
been designed for a given LDPC decoder architecture, such
as in [2], [3]. A brief review can be found in [4]. However,
there is no classi�cation of these di�erent architectures.
It is quite di�cult to compare them and thus to design
a speci�c decoder which �ts certain given speci�cations.
Moreover, to our knowledge, all the published decoders
use the
ooding scheduling for the belief propagation
algorithm (BP), except for the decoder of Mansour [5] and
Hocevar [6]. In fact, no architecture has been proposed so
far for shu�e BP scheduling [7], [8]. Finally, the complexity
of LDPC code decoders is quite di�cult to evaluate. Only
the complexity of check node processors has been studied
so far [9], [10], but the complexity of the check node is
only a part of the answer. We suggest also considering the
complexity of the LDPC code itself.

The �rst part of the next section presents the notations
that will be used throughout this paper. It also recalls
brie
y the bipartite graph representation which is very
convenient when dealing with LDPC codes. In the second
part of section II, the decoding algorithm for LDPC codes
is brie
y recalled, independently of scheduling.

This work was supported by the E.U., under project number
SPRING IST 1999-12342
F. Guilloud is associate professor at GET/ENST Bretagne, France.
E. Boutillon is professor at the Universit�e de Bretagne Sud, France.
J. Tousch is co-founder and CTO of TurboConcept SAS, France.
J.-L. Danger is professor at GET/ENST Paris, France.

In section III, three classical di�erent schedules are pre-
sented: the
ooding schedule and the two shu�e schedules
(the horizontal one and the vertical one from [7], [8]). In
section IV, an evaluation of the complexity for decoding
LDPC codes is proposed. The purpose is to compare
di�erent LDPC codes and help the designer to evaluate
the message-passing structure that is to be proposed to
suit the required speci�cations.
In section V, a generic architecture for LDPC code

decoders is proposed. It is speci�ed by several parameters
related either to the datapath or to the processing modes
of variable and check nodes. We show that the combination
of these parameters enables us to describe most of the
published LDPC decoders, and hence to compare them.
Based on this generic architecture, the synthesis of a new
architecture for LDPC code decoders is proposed, imple-
menting a fast converging decoding algorithm. Section VII
summarizes the results and concludes this paper.

II. Decoding algorithms

The most popular LDPC decoding algorithm is the
belief propagation (BP) algorithm, which is optimal if the
graph of the code does not contain any cycles. Although
the graph of LDPC codes does contain cycles, this algo-
rithm is still used and is considered as a reference. Before
describing this algorithm, we introduce the notations that
will be used hereafter.

A. Notations, bipartite graphs

An LDPC code or a repeat-accumulate (RA) code of
size N and rate R can be represented as a bipartite graph
where the N bits are represented by N variable nodes vn.
Each variable node is connected to some of the M parity-
check nodes, M � (1�R)�N . We denote byM(n) (resp.
N (m)) the set of all the parity check indices (resp. variable
indices) that are connected to the variable vn (resp. parity
check cm). We denote also by M(n)nm (resp. N (m)nn)
the set of the parity check (resp. variable) indices that
are connected to the variable vn (resp. parity check cm)
without the parity check cm (resp. variable vn). A cycle on
the graph is de�ned as a closed path. Finally, we denote by
jAj the cardinal of the set A. Thus, the parity check cm is
connected to jN (m)j variables and the variable node vn is
connected to jM(n)j check nodes. The degree of a node is
the number of edges connected to it; so the variable node
vn has degree jM(n)j and the check node cm has degree
jN (m)j. An LDPC code is said to be regular if the degree
dv of its variable nodes and the degree dc of its check nodes
are constants.

2

B. Decoding with the BP-algorithm

Let Em;n denote the message from check cm to variable
vn. Similarly, let Tn;m denote the message from variable
vn to check cm. Each node of the graph (check node or
variable node) is replaced by a processor whose input-
output ports are the connections of the graph. The BP
algorithm describes the behavior of each type of processor:

� a variable-processor Vn has to compute the output
messages Tn;m using the input messages Em;n accord-
ing to:

Tn;m = In + En � Em;n (1)

where En =
X

m2M(n)

Em;n is the extrinsic information

of the variable vn. The variable In associated with
each variable vn is called intrinsic information. In =
2yn=�

2 in the case of a BPSK modulation over an
additive white Gaussian noise (AWGN) channel of
variance �2, where yn is the observation of the n-th
received symbol of the codeword.

� a check-processor Cm has to compute the output mes-
sages Em;n using the input messages Tn;m according
to the function F: Em;n = F

n02N (m)nn
(Tn0;m) de�ned

by [1]:

8>>>><
>>>>:

jEm;nj = f�1

0
@ X

n02N (m)nn

f (Tn0;m)

1
A

sign (Em;n) =
Y

n02N (m)nn

sign (Tn0;m)

(2)

where f(x) = � ln(tanh(jxj=2)).

The processors can process independently: they sample
their input messages and process their output messages.
For a graph without cycles, the algorithm converges to-
ward a unique solution whatever the sample times are.

III. Decoding schedules

When the graph of the code contains cycles, the order
of the sample times between the processor will have an
in
uence on the results of the message passing algorithm.
The schedule denotes the given order of the sampling times
between all the node processors. Not all the schedules
yield the same results: the unavoidable existence of cycles
in an LDPC code of �nite length generates a correlation
between outgoing and incoming messages and yields some
self-information behavior that decreases the performance
of the iterative decoding process [11], [12] and introduces
pseudo-codewords [13]. The loss in performance increases
as the length of the cycles becomes shorter. The smallest
cycle length in the graph is called the girth. A proba-
bilistic schedule that achieves good performance was �rst
presented by Mao and Banihashemi [14]. It will not be
addressed however in this paper, since we only consider
schedules updating all the edges in one iteration.

A. Flooding schedules

The most popular schedule associated with the BP
algorithm is the
ooding schedule (FS). All the variable-
processors sample their input at the same time and then all
the check-processors sample their input at the same time.
Once all the messages have been processed, one decoding
iteration has been completed. Iterations are repeated as
long as required. The
ooding schedule is summed up in
algorithm 1. It can be noted that in this scheduling, the
computation of the extrinsic information E

(i)
n of a given

variable vn is performed in one step of the algorithm (line
number 7).

Algorithm 1 Flooding schedule (FS)

1: Initialization:
2: i = 0, E

(0)
m;n = 0, 8m; 8n 2 N (m), In = 2yn=�

2, 8n
3: repeat

4: i = i+ 1
5: fVariable Node Updateg
6: for all indices of variable nodes vn, n 2 f1; � � � ; Ng

do

7: E(i)
n =

X
m2M(n)

E(i�1)
m;n fExtrinsic Information

Computationg
8: T (i)

n = In+E
(i)
n fTotal Information Computationg

9: for all indices of parity-check node cm connected
to variable node vn (m 2M(n)) do

10: T (i)
n;m = T (i)

n � E(i�1)
m;n

11: end for

12: end for

13: fCheck Node Updateg
14: for all indices of parity-check node cm, m 2

f1; � � � ;Mg do
15: for all indices of variable node vn implied in

parity-check cm (n 2 N (m)) do
16: E(i)

m;n = F
n02N (m)nn

(Tn0;m)

17: end for

18: end for

19: until i � imax or convergence to a codeword

20: The decoded bits are estimated through sign
�
T
(i)
n

�

It is possible to have a di�erent and equivalent rep-
resentation of the FS schedule, closer to some hardware
implementations, combining the operations processed in
the check nodes and in the variable nodes. For example,
the variable-node processing can be distributed during
the whole iteration while the check-nodes are processed
sequentially (singly or in groups of P). More precisely,
the computation of the extrinsic information is not pro-
cessed in a single step as indicated in algorithm 2 on line
10. In this case, memories are required in the variable-
node processor to save the accumulation of the check-to-
variable messages of both the current and the previous
iteration (E

(i�1)
n and E

(i)
n respectively). This schedule will

be denoted the parity-check
ooding schedule (FS-P). It
is also possible to process the variables sequentially, the

3

Algorithm 2 Flooding schedule over the parity checks
(FS-P)

1: Initialization:
2: i = 0, E

(0)
m;n = 0, E

(0)
n = 0, In = 2yn=�

2, 8 (m;n 2
N (m))

3: repeat

4: i = i+ 1, E
(i)
n = 0 8n 2 f1; � � � ; Ng

5: for all indices of check-nodes cm, m 2 f1; � � � ;Mg
do

6: for all indices of variable-node vn implied in
check-nodes cm fPartial Variable Node Updateg
do

7: T
(i)
n = In + E

(i�1)
n fTotal Informationg

8: T
(i)
n;m = T

(i)
n � E

(i�1)
m;n

9: end for

10: for all indices of variable-node vn implied in
check-nodes cm fCheck Node Updateg do

11: E(i)
m;n = F

n02N (m)nn

�
T
(i)
n0;m

�

12: E
(i)
n = E

(i)
n + E

(i)
m;n fExtrinsic Information

Accumulationg
13: end for

14: end for

15: until i � imax or convergence to a codeword

16: The sent bits can be estimated through sign
�
T
(i)
n

�

processing of the check-processors being distributed. It is
then denoted by the variable
ooding schedule (FS-V).

B. Fast converging schedules

Two other schedules are used which will be called the
horizontal and vertical shu�e schedules (HSS and VSS)
[4], [7], [8].
The VSS was proposed independently by K�r and Kan-

ter [15], and Zhang and Fossorier [7], [8]. One of the main
advantages of the VSS is that it enables the decoding
convergence to speed up. In
ooding-like schedules, we ob-
serve that the processing of the check-to-variable messages
E
(i)
m;n at iteration (i) is based upon the variable-to-check

messages T
(i�1)
n;m at the previous iteration (i�1). However,

certain values of T
(i)
n;m could already be computed based

on partial computation of E
(i)
m;n and then be used instead

of T
(i�1)
n;m to compute the remaining messages E

(i)
m;n [7],

[8], hence the shu�ing of the check node update and the
variable node update. The VSS is described in algorithm 3.

The HSS is the converse of the VSS: the roles of check-
nodes and variable-nodes are swapped. It is a turbo-
decoding like schedule, where the component codes are
the rows or groups of rows of the parity-check matrix.
A complete historical view of this schedule class can be
found in [6]. An LDPC HSS decoder was generalized
by Boutillon et. al. [16]. This schedule also enables the
decoding convergence to speed up.
Note that these schedules force the node processing

Algorithm 3 Vertical Shu�e Schedule (VSS)

1: Initialization:
2: i = 0, E

(0)
m;n = 0, T

(0)
n;m = In = 2yn=�

2, 8 (m;n)
3: repeat

4: i = i+ 1
5: for all indices of variable-nodes vn, n 2 f1; � � � ; Ng

do

6: for all indices of check-nodes cm connected to
variable-node vn do

7: fCheck Node Updateg

8: E(i)
m;n = F

n1 2 N (m)nn; n1 < n
n2 2 N (m)nn; n2 > n

�
T (i)
n1;m

; T (i�1)
n2;m

�

9: En =
X

m2M(n)

E(i)
m;n

10: fVariable Node Updateg
11: T (i)

n = In + En

12: T (i)
n;m = T (i)

n � E(i)
m;n

13: end for

14: end for

15: until i � imax or convergence to a codeword

16: The sent bits can be estimated through sign
�
T (i)
n

�

to be serial. The use of parallelism (P > 1) leads to
implementing the group shu�ed approach [7].

IV. Analysis of Complexity

The decoding complexity of an LDPC code is directly
linked to the number of messages to be processed per
iteration, i.e. to the number of edges within the bipartite
graph of the code, or equivalently, to the number of non-
zero entries of the parity-check matrix (two messages per
edge), whatever the scheduling is : the scheduling is in fact
only a partitionning of the di�erent edges to be processed.

A. Processing power

One decoding iteration involves processing all the Tn;m
and Em;n messages, related to the edge between the
variable vn and the parity-check cm. Let E denote the total
number of edges inside the bipartite graph of the code. For
a regular (dv; dc) LDPC code of length N , for example, the
total number of edges is given by:

E = dvM = dcN (3)

Let Pc denote the required processing power to decode
LDPC codes, de�ned as the number of edges to be pro-
cessed per clock cycle (we assume the decoder is im-
plemented on synchronous-logic hardware, using a single
clock). We can derive Pc from the following parameters:

� the number K of information bits to be transmitted
per codeword;

� the rate R of the code;
� the information throughput D required;

4

� the maximum number1 of iterations imax;
� the clock frequency fclk.

We will assume hereafter that the matrix is full rank, that
is M = (1�R)N . The number of variables ([var]) to be
processed at each clock cycle is the number of variables

per second (
D

R
[var/s]) multiplied by the duration of a

cycle, which yields to:
D

fclkR
[var/cycle] Moreover, there

are E � imax edges to be processed to decode the N bit

length codeword, i.e.:
Eimax

N
[edges/var] So the number

of edges to be processed per clock cycle is equal to:

Pc =
D

fclkR
[var/cycle] �

Eimax

N
[edges/var] (4)

=
EimaxD

Kfclk
[edges/cycle] (5)

Pc can also be expressed using the average variable node
degree dv = E=N and the rate R = K=N of the code:

Pc =
dvimaxD

fclkR
(6)

B. Example

To illustrate the results of the theoretical study, let us
consider a regular LDPC code of length N and rate R =
1=2, with parameters (dv; dc) = (3; 6). Assume that this
code is decoded with a binary throughput D = 10 Mbits/s
by means of a decoder with a clock frequency of 100 MHz.
What is the minimum number of edges to be processed by
the architecture per clock cycle to achieve the throughput
if a maximum of imax = 20 iterations is speci�ed?
The code being regular, the number E of edges is E =

3N . Considering that K = N=2 (code rate is 1=2), the
numerical application of (5) yields:

Pc =
EimaxD

Kfclk
=

3N � 20� 10:106

100:106 �N=2
= 12 [edges/cycle]

Thus, at each clock cycle, an average of 12=3 = 4 vari-
able nodes and 12=6 = 2 parity-check nodes have to be
processed. The architecture of the decoder has to use a
parallelism of at least 2 check-processors and 4 variable-
processors to achieve the speci�cations.

V. Generic Architecture of LDPC code

decoders

We propose now to de�ne a generic architecture for an
LDPC code decoder, associated with various parameters.
The aim of this section is to de�ne a parametric and
generic architecture of LDPC decoders that embeds most
of the existing published architectures. This architecture
is based on node processor architectures, the position and
type of memory, the algorithm schedules and the level of
parallelism.

1Our analysis assumes a �xed maximum number of iterations. The
results can be easily generalized to a variable number of iterations
(e.g. using the well known syndrome-based convergence test), replac-
ing imax by the average number of iterations actually performed. See
also [17].

A. Generic Node processors

1) Data-paths: The generic node processor is made up
of d input/output ports (ej ; sj); j 2 f1; � � � ; dg. Internal
memory banks allow input or output messages to be saved
inside the node processor. The processing of an output
port sj is performed according to: sj =

O
i6=j

feig where
N

is a generic associative operator. Many architectures can
be implemented for this processor: for example, the trellis
architecture [2], [18] on �gure 1-(b) or the \total sum"
architecture [19], [20] in �gure 1-(a) with both parallel
and serial implementation. The total-sum implementation
involves computing �rst the \total sum" which is de�ned
as: s =

O
i

feig. Then the j�th input is inversed so as

to compute sj from s. This implementation is interesting
when the degree of the processor is high, since a lot of
common computations are grouped. But it is possible only
when the operator can be reversed. These are detailed in
[4]. Note that these di�erent architectures can have ei-
ther a parallel implementation or a serial implementation.
Registers can also be added to pipe-line the processing
and thus decrease the critical path length. The generic
operator may be either the sum (

P
), or the star (?). The

star operator between two log-likelihood ratios is de�ned
as the function F applied on them [21]:

ei ? ej =
1 + exp (ei � ej)

exp (ei) + exp (ej)

2) Update modes: There are three steps to be handled
inside a generic node processor: input message reading
(or sampling), computation of the output messages and
output of the outgoing messages. There are mainly two
types of approaches that can be de�ned to manage these
three steps di�erently for the d input/output ports of the
processor: grouped update and spread update.
The grouped update involves computing the output

messages if and only if all the input messages have been
sampled. So a typical scheme is �rst to wait for all the
inputs to be updated and to save them. Then all the
output messages are to be computed, and �nally to be
output. Then a new cycle can start again by waiting for
all the inputs to be updated in the memory, erasing the
previous ones.
The spread update is a kind of on-demand control. It

means that, for example, the node processor can be asked
for a given output message, and then it can be asked to
take into account a new input message. Two spread update
modes can be de�ned, depending on the memory inside
the node processor: the straight one and the delayed one.
When a new input message on a given edge has to be taken
into account, either the previous message related to this
edge is erased and replaced by this new one (straight up-
date), or there are two memories (delayed update) denoted
input-memory and compute-memory: the new message is
saved in the input-memory while the previous one has been
saved in the compute-memory. When the input-memory is
full then the roles of the two memories are swapped. In the

5

delay
op_1

op_1

: unused
Nu

: dummy
NdN

a) Total sum �rst Implementations

N
inv
 (:)

s1e1

b) Trellis Implementation

N
N

N
N

N

N
N

N

N

s2

e2 e3

s3 s4

e4

N

e1

s1

N
Nd

u d

u0

0

...

...
...

...
ed

inv
 (:)
Nsd

si

N� � �

Nei

inv
 (:)

Fig. 1. Generic Node Processor: implementation for \total sum" and \trellis" schemes

TABLE I

The schedules associated with the different combinations

of updates for variable and check node processors.

Parity
-check

Grouped FS-V VSS

delayed straight

spread
delayed

straight

Grouped

FS

FS-P

HSS controlled

edge

Variable

spread

straight update case, the same memory is used to save the
new incoming inputs and to compute the output messages.
Hence, the last output message will be processed with the
most recent input messages. The straight spread update is
implemented to speed up the propagation of the messages
as in shu�e schedules.
To summarize, there are three ways of handling the

processing steps in a generic node processor: the straight
spread update, the delayed spread update and the grouped
update. When combining these three handling on the
check and the variable node processors, it is possible to
span all the known schedules of LDPC decoding. These
are summed up in table I.

B. Message Passing Architecture

The generic processors are instanciated so as to cre-
ate the global architecture of the decoder, as illustrated
in �gure 2. The variable-processors Vi and the check-
processors Ci are instances of the generic node processor
with di�erent values of parameters. P check-processors
with d0c input/output ports are instanciated. So each of
them is able to process a parity-check of degree dc within
� = dc=d

0
c clock cycles.

The interconnection network represented in the bipar-
tite graph of an LDPC code is materialized through a
shu�e or a routing network � and its inverse ��1. The
complexity of the interconnection network depends on the
structure of the parity-check matrix. From an implemen-
tation point of view, it seems desirable to have simple

C2C1 CP

V1 VPd0

c=d
0

v

Control

� ��1

� � � � � �

� � �� � �

� � � CP�1

d0c =
dc
�

� � �

d0v = dv
�

Check-

Interconnection
network

processors

processors

Variable-

Fig. 2. Generic Message Passing Architecture

interconnections such as a barrel shifter, like in [6], [22].
Depending on speci�c hardware constraints, this network
can be implemented on di�erent alternative locations, as
illustrated in �gure 3: depending on the check node generic
operator (star or sum operator), up to four di�erent loca-
tions are presented (dashed lines) separating the variable
node processors from the check node processors. With the
use of the star operator (the input and the output of
the parity-check node processors have the dimension of
LLR's), there is only one possible location. But with the
sum operator, there are four di�erent locations, whether
the inputs and the outputs of the node processors are in
the Fourier domain or not.
The optimal number of variable-processors having d0v

input/output ports is given by the fact that the intercon-
nection network has a determinate number of inputs and
outputs. Each of the variable-processors is able to process
a parity-check of degree dv within � = dv=d

0
v clock cycles.

Such a generic message passing architecture has a com-
plexity Pc as de�ned by equation (5) which is equal to:

Pc = P � d0c = P � dc=� (7)

Thus, if we take the example of section IV-B where Pc =
12, a solution with P = 2 check-processors is possible

6

if the check-processors are able to process at least d0c =
Pc=P = 6 inputs/outputs per clock cycle (� = 1), i.e. if
P = 2 parallel generic processors are used. If serial generic
processors are to be used (� = dc = 6), then P = 12
check-processors would have to be instanciated to achieve
the speci�cations.

VI. Architecture Analysis and Synthesis for

LDPC code decoders

A generic architecture for LDPC decoders was proposed
in section V. In this section, some examples from the
literature are taken to illustrate the versatility of the
generic architecture. Then, we show that shu�ing the
parameters of the generic architecture can even yield a
new architecture for the VSS schedule.

A. Architecture Analysis

The parameters specifying the architecture of LDPC
code decoders have been de�ned in the previous sections.
They are listed below:

� Node processors:

{ 3 possible architectures (direct, trellis, total sum)
{ 4 possible locations for the interconnection net-

work
{ 3 possible update modes (grouped, straight or

delayed spread)

� Message passing architecture:

{ 3 parameters for the parallelism speci�cation (P ,
�, �)

Some combinations of values for these parameters have
already been used or implemented in LDPC decoders.
Some other combinations are new and yield interesting
new implementations.
Due to the limited number of pages, we cannot present

a classi�cation of all the published decoder architectures,
so we present only three of them hereafter: they fairly
illustrate the diversity of the published architectures. Note

f(x) f�1(x)

P

P

2
1

4
3

?

P

cm

vn

(eye)

Fig. 3. The possible locations of the interconnection network. The
datapath for the sign (:) processing of the messages is omitted in this
�gure.

that the parameters we propose for the description of the
following architectures are summed up in the �rst three
columns of table II.
The �rst one is from Zhang and Parhi [23]. It is a

decoder implemented on an FPGA Xilinx Virtex 2600
having a throughput of 54 Mbit/s, for a regular code
of length N = 9216 bits and of rate R = 0:5. We can
note that the node processors are completely parallel.
The scheduling is the
ooding scheduling (FS), and the
locations of the interconnection network is such that look
up tables are required in both the check nodes and the
variable nodes (location number 2).
The second example is an architecture proposed by

Chen and Hocevar [24] implemented on an ASIC 0:11�
and having a throughput of 376 Mbit/s. The length of
the code is N = 8088, the rate is also R = 0:5, but
the code is irregular. In this implementation, the check
node processors are parallel whereas the variable node
processors are serial. The location of the interconnection
network is classical (the look up tables are in the check
node processors). The scheduling is the
ooding one over
the variables (FS-V).
The third example is an architecture proposed by Man-

sour [25] implemented on an ASIC 0:18� and having a
throughput of 192 Mbit/s. The length of the code is N =
2304, the rate is R = 2=3, and the code is also irregular.
In this implementation, the check node processors and the
variable node processors are both serial. The location of
the interconnection network is classical (the look up tables
are in the check node processors). The scheduling is the
shu�ed one over the parity checks (HSS).

B. Architecture synthesis

1) Example of a new architecture: The architecture
family generated by our framework also encompasses new
e�cient architectures. An example of an application of this
formalism is given in the last column of table II. The
algorithm performed by this architecture is exactly the
Vertical Shu�e Schedule (VSS), as speci�ed in table I. To
our best knowledge, it is the �rst published architecture
implementing this algorithm. It is depicted in �gure 4,
where only the magnitude processing is illustrated. Algo-
rithm 4 is applied: it is a hardware-oriented description
of algorithm 3 for the magnitude part only. The mes-
sages have changed: the variable-to-check message magni-
tude are now denoted Qn;m = f(Tn;m), and the check-
to-variable message magnitudes are denoted jEm;nj =
f�1(Rm;n). They are function of the previous Em;n and
Tn;m messages through the f function. The Qn;m messages
are saved in the memory either on the variable side (dotted
lines in the �gure) or on the parity-check side. They are
read from this memory and are subtracted from the Rm

value to obtain the Rm;n message. The straight spread
update is performed on the check-processor side: the values
Rm relating to the parity-checks cm are saved in memory.
If we assume that N (m) = fn1; � � � ; ndcg, then R

(i)
m is

updated dc times during a decoding iteration. If we denote

7

TABLE II

Examples of the parameter values for several published implementations of LDPC decoders and for a new one.

Reference Zhang and Parhi
[23]

Chen and Hocevar
[24]

Mansour and
Shanbhag [25]

New Implementa-
tion

Message
passing
architecture

� 1 1 1 dc
� 1 dv 1 dv
P 18 24 64 Pc

Interconnection Network Location 2 1 1 4
Variable-
Processor

update compact delayed spread straight spread grouped
architecture trellis total sum total sum total sum

Parity-check
processor

update grouped grouped grouped straight delayed
architecture trellis total sum trellis total sum

f

f�1

from sign processing
sign

�
E

(i�1)
m;n

�

to sign processing
sign

�
T

(i)
n;m

�

Qn;m
(direct)

Rm

T
(i)
n;m

In

Serial generic

with
N

=
PProcessor

interconnection

network

Q
(i)
n;m

Q
(i�1)
n;m

Q
(i)
n;m �Q

(i�1)
n;m

straight spread
update

E
(i�1)
m;n jE

(i�1)
m;n j

(inverse)

R
(i�1)
m;n

R
(i)
m

Fig. 4. New architecture proposal associated with the Vertical Shu�e Schedule of the BP algorithm (serial implementation for both check
and variable node processors, magnitude processing on the check side).

the Jth update of R
(i)
m by R

(i;J)
m then we have:

R(i;J)
m =

JX
j=1

Q(i)
nj ;m

+

dcX
j=J+1

Q(i�1)
nj ;m

(8)

=
JX

j=1

f
�
T (i)
nj ;m

�
+

dcX
j=J+1

f
�
T (i�1)
nj ;m

�
(9)

where J is a positive integer varying from 1 to dc during
the iteration. The Rm;n messages are fed to the vari-
able node processor where the Tm;n values are processed
and transformed into Qn;m messages. These new Qn;m

messages replace in memory the message of the previous
iteration. Also, the Rm value is updated by subtracting the
old Qn;m and adding the new one (see algorithm 4, line
13). This architecture requires saving (N +M + E) values
for the In, Rm and Qn;m data respectively. Note that the
architecture associated with the HSS requires only saving
(N + E) values for the In + En and Em;n data.

2) Comparison of memory requirements for the di�erent
schedules (table III): We assume that an LDPC code of
length N has an average variable degree of dvaverage = 3.
Then E = dvaverageN = 3N . We also assume that all the
messages are coded using the same �xed-point format on
w bits. Finally, we omit the input/output bu�ers which

TABLE III

Memory requirements for the 3 different schedules

Schedule Memory size
Numerical Application

R = 1=3 R = 1=2 R = 9=10

FS-P Ew + 3Nw 6Nw
HSS Ew +Nw 4Nw
VSS Ew + (2�R)Nw 4:67Nw 4:5Nw 4:1Nw

would add two memories of Nw bits each. The HSS has
the lowest required memory size. The VSS memory size
is a function of the code rate: for high code rates, it is
possible to use almost the same amount of memory as for
the HSS. It is to be noted that the FS-P has a higher
memory requirement than the two shu�e schedules HSS
and VSS. However, the main part of the memory is used
to save the edge messages. This issue can be addressed
using sub-optimal algorithms such as the (scaled or o�set)
BP-Based algorithm [10], [26], the ��min algorithm [21]
or the A�min* algorithm [27].

VII. Conclusion

A lot of LDPC code decoders have been proposed in
the literature. However, it is di�cult to compare them.

8

Algorithm 4 Vertical Shu�e Schedule (VSS): hardware-
oriented description (Magnitude part only)

1: Initialization:
2: i = 0, Q

(0)
n;m = f(In) = f(2yn=�

2), R(0)
m =X

n2N (m)

Q(0)
n;m, 8 (m;n)

3: repeat

4: i = i+ 1
5: R

(i)
m = R

(i�1)
m

6: for all indices of variable-nodes vn, n 2 f1; � � � ; Ng
do

7: for all indices of check-nodes cm connected to
variable-node vn do

8: R
(i�1)
m;n = R

(i)
m �Q

(i�1)
n;m

9: jE
(i�1)
m;n j = f�1

�
R
(i�1)
m;n

�

10: T
(i)
n = In +

P
m2M(n)E

(i�1)
m;n

11: T
(i)
n;m = T

(i)
n � E

(i�1)
m;n

12: Q
(i)
n;m = f

�
T
(i)
n;m

�

13: R
(i)
m = R

(i)
m �Q

(i�1)
n;m +Q

(i)
n;m

14: end for

15: end for

16: until i � imax or convergence to a codeword

17: The sent bits can be estimated through sign
�
T (i)
n

�

We have proposed a global framework for the description,
analysis and synthesis of low-density parity-check (LDPC)
code decoders. It is based on a generic model of a decoder
described by parameters, related to a generic node proces-
sor and to a generic message passing architecture. A quan-
ti�cation of the complexity required by the decoding of an
LDPC code has also been proposed. This framework makes
it possible to describe several published LDPC decoder
implementations using the same model and parameters.
It also makes it possible to ensure a good match between
algorithm and scheduling on the one hand, and decoder
architectures on the other hand, as illustrated by the new
e�cient architecture proposed in this paper.

Acknowledgment

The authors would like to thank Prof. David Declercq
for interesting comments on an earlier draft of this pa-
per, and the anonymous reviewers for their interesting
comments. Many thanks also to Janet Ormrod for her
contributions.

References

[1] R. Gallager, \Low-density parity-check codes," IRE Transac-
tions on Information Theory, vol. 8, pp. 21{28, Jan. 1962.

[2] E. Boutillon, J. Castura, and F. Kschischang, \Decoder-�rst
code design," in Proc. 2nd Int. Symp. on Turbo Codes & Related
Topics, Brest, France, Sept. 2000, pp. 459{462.

[3] F. Verdier and D. Declercq, \A LDPC parity check matrix
construction for parallel hardware decoding," in Proc. 3rd Int.
Symp. on Turbo Codes & related topics, Sept. 1-5, 2003.

[4] F. Guilloud, \Generic architectures for LDPC codes decoding,"
Ph.D. dissertation, Telecom Paris, Jul. 2004.

[5] M. Mansour and N. Shanbhag, \Turbo decoder architectures for
low-density parity-check codes," in Proc. IEEE Global Telecom-
mun. Conf. (GLOBECOM), Nov 17 - 21, 2002.

[6] D. Hocevar, \A reduced complexity decoder architecture via
layered decoding of LDPC codes," in IEEE Workshop on Signal
Processing Systems, SIPS 2004, 13-15 Oct. 2004, pp. 107{112.

[7] J. Zhang and M. Fossorier, \Shu�ed belief propagation de-
coding," in Conference Record of the Thirty-Sixth Asilomar
Conference on Signals, Systems and Computers, 2002., 3-6 Nov.
2002.

[8] ||, \Shu�ed iterative decoding," IEEE Trans. Commun.,
vol. 53, pp. 209{213, Feb. 2005.

[9] T. Theocharides, G. Link, E. Swankoski, N. Vijaykrishnan,
M. Irwin, and H. Schmit, \Evaluating alternative implementa-
tions for LDPC decoder check node function," in IEEE Com-
puter Society Annual Symposium on VLSI, 19-20 Feb. 2004, pp.
77{ 82.

[10] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-
Y. Hu, \Reduced-complexity decoding of LDPC codes," IEEE
Trans. Commun., vol. 53, no. 8, pp. 1288{1298, Aug. 2005.

[11] D. MacKay and R. Neal, \Good codes based on very sparse
matrices," in 5th IMA Conference on Cryprography and Coding.
Berlin, Germany: Springer, 1995.

[12] M. C. Davey and D. J. C. MacKay, \Low density parity check
codes over GF(q)," IEEE Commun. Lett., vol. 2, 1998.

[13] N. Wiberg, \Codes and decoding on general graphs," Ph.D.
dissertation, Link�oping University, Sweden, 1996.

[14] Y. Mao and A. Banihashemi, \Decoding low-density parity-
check codes with probabilistic scheduling," IEEE Commun.
Lett., vol. 5, pp. 414{416, October 2001.

[15] H. K�r and I. Kanter, \Parallel versus sequential updating for
belief propagation decoding,"Physica A, vol. 330, pp. 259{270,
Dec. 2003.

[16] E. Boutillon, J. Tousch, and F. Guilloud, LDPC decoder, corre-
sponding method, system and computer program, Dec. 2003, US
Patent pending.

[17] A. Martinez and M. Rovini, \Iterative decoders based on statis-
tical multiplexing," in Proc. 3rd Int. Symp. on Turbo Codes &
related topics, Sept. 1-5, 2003.

[18] M. Mansour and N. Shanbhag, \Low-power VLSI decoder archi-
tectures for LDPC codes," in Int. Symp. Low Power Electronic
Design, Aug. 12-14, 2002.

[19] A. Blanksby and C. Howland, \A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder," Journal of Solid-
State Circuits, vol. 37, pp. 404{412, Mar. 2002.

[20] E. Yeo, B. Nikoli�c, and V. Anantharam, \High throughput
low-density parity-check decoder architectures," in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Nov. 25-29, 2001.

[21] F. Guilloud, E. Boutillon, and J.-L. Danger, \��min decoding
algorithm of regular and irregular LDPC codes," in Proc. 3rd

Int. Symp. on Turbo Codes & related topics, Sept. 1-5, 2003.
[22] E. T. S. I. (ETSI), \Digital video broadcasting (dvb); second

generation framing structure, channel coding and modulation
systems for broadcasting, interactive services, news gathering
and other broadband satellite applications," Mar. 2005.

[23] T. Zhang and K. K. Parhi, \An FPGA implementation of
(3,6)-regular low-density parity-check code decoder,"EURASIP
Journal on Applied Signal Processing, special issue on Rapid
Prototyping of DSP Systems, vol. 2003, no. 6, pp. 530{542, May
2003.

[24] Y. Chen and D. Hocevar, \An FPGA and ASIC implementation
of rate 1/2, 8088-b irregular low density parity check decoder,"
in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), 1-5
Dec. 2003.

[25] M. Mansour and N. Shanbhag, \High-throughput LDPC de-
coders," IEEE Trans. VLSI Syst., vol. 11, pp. 976 { 996, Dec.
2003.

[26] M. Fossorier, M. Mihaljevi�c, and I. Imai, \Reduced complexity
iterative decoding of low-density parity-check codes based on
belief propagation," IEEE Trans. Commun., vol. 47, pp. 673{
680, May 1999.

[27] C. Jones, E. Vall�es, M. Smith, and J. Villasenor, \Approximate-
min* constraint node updating for LDPC code decoding," in
Proc. IEEE Military Commun. Conf. (MILCOM), 13-16 Oct.
2003.

	Introduction
	Decoding algorithms
	Notations, bipartite graphs
	Decoding with the BP-algorithm

	Decoding schedules
	Flooding schedules
	Fast converging schedules

	Analysis of Complexity
	Processing power
	Example

	Generic Architecture of LDPC code decoders
	Generic Node processors
	Data-paths
	Update modes

	Message Passing Architecture

	Architecture Analysis and Synthesis for LDPC code decoders
	Architecture Analysis
	Architecture synthesis
	Example of a new architecture
	Comparison of memory requirements for the different schedules (table III)

	Conclusion
	Acknowledgment
	References

